SE Debian: how to make NSA SE Linux work in a distribution

Russell Coker <russell@coker.com.au>,
http://www.coker.com.au/

Abstract

I conservatively expect that tens of thousands of
Debian users will be using NSA SE Linux [1] next
year. I will explain how to make SE Linux work
as part of a distribution, and be managable for the
administrator.

Although I am writing about my work in devel-
oping SE Linux support for Debian, I am using
generic terms as much as possible, as the same
things need to be done for RPM based distributions.

1 Introduction

SE Linux offers significant benefits for security.
It accomplishes this by adding another layer of
security in addition to the default Unix permissions
model. This is accomplished by firstly assigning
a type to every file, device, network socket, etc.
Then every process has a domain, and the level of
access permitted to a type is determined by the
domain of the process that is attempting the access
(in addition to the usual Unix permission checks).
Domains may only be changed at process execution
time. The domain may automatically be changed
when a process is executed based on the type of
the executable program file and the domain of the
process that is executing it, or a privileged process
may specify the new domain for the child process.

In addition to the use of domains and types for
access control SE Linux tracks the identity of
the user (which will be system_u for processes
that are part of the operating system or the Unix
user-name) and the role. Each identity will have a
list of roles that it is permitted to assume, and each
role will have a list of domains that it may use.

This gives a high level of control over the actions of
a user which is tracked through the system. When
the user runs SUID or SGID programs the original
identity will still be tracked and their privileges in
the SE security scheme will not change. This is very
different to the standard Unix permissions where
after a SUID program runs another SUID program
it’s impossible to determine who ran the original
process. Also of note is the fact that operations
that are denied by the security policy [2] have the
identity of the process in question logged.

For a detailed description of how SE Linux works
I recommend reading the paper Peter Loscocco
presented at OLS in 2001 [1].

The difficulty is that this increase in functionality
also involves an increase in complexity, and requires
re-authenticating more often than on a regular
Unix system (the SE Linux security policy requires
that the user re-authenticate for change of role).
Due to this most people who could benefit from
SE Linux will find themselves unable to use it
because of the difficulties of managing it. I plan to
address this problem through packaging SE Linux
for Debian.

The first issue is getting packages of software that
is patched for support of the SE Linux system
calls and logic. This includes modified programs
for every method of login (/bin/login, sshd, and X
login programs), modified cron to run cron jobs in
the correct security context, modified ps to display
the security context, modified logrotate to keep the
correct context on log files, as well as many other
modified utilities.

The next issue is to configure the system such that
when a package of software is installed the correct
security contexts will be automatically applied to
all files.



The most difficult problem is ensuring that con-
figuration scripts get run in the correct security
context when installing and upgrading packages.

The final problem is managing the configuration
files for the security policy.

Once these problems are solved there is still the issue
of the SE Linux sample policy being far from the
complete policy that is needed in a real network. I
estimate that at least 500 new security policy files
will need to be written before the sample policy is
complete enough that most people can just select
the parts that they need for a working system.

2 Patching the Packages

The task of the login program is to authenticate
the user, chown the tty device to the correct UID,
and change to the appropriate UID/GID before
executing the user’s shell. The SE patched version
of the login program performs the same tasks, but
in addition changes the security identifier (SID) on
the terminal device with the chsid system call and
then uses the execve_secure system call instead of
the ezrecve system call to change the SID of the
child process. The login program also gives the
user a choice of which of their authorised roles they
will assume at login time.

This is not very different from the regular function-
ality of the login program and does not require a
significant patch.

Typically this adds less than 9K to the object size
of the login program, so hopefully soon many of
the login programs will have the SE code always
compiled in. For the rest we just need a set of
packages containing the SE versions of the same
programs. So this issue is not a difficult one to
solve and most of the work needed to solve it has
been done.

A similar patch needs to be applied to many

other programs which perform similar operations.
One example is cron which needs to be modified
so cron jobs will be run in the correct security
context. Another example is the suexrec program
from Apache. An example of a similar program
for which no-one has yet written a patch is procmail.

Programs which copy files also need to have suitable
options for preserving SIDs, logrotate and the fileu-
tils package (which includes cp) have such patches,
cpio lacks such a patch, and there is a patch for tar
but it doesn’t apply to recent versions and probably
needs to be re-written.

3 Setting the Correct SID When In-
stalling Files

When a package of software is installed the final
part of the installation is running a postinst script
which in the case of a daemon will usually start
the daemon in question. However if the files in
the package do not have the correct SIDs then the
daemon may not be able to run, or will be unable
to run correctly!

The Debian packaging system does not currently
have any support for running a script after the
files of a package are installed but before the
postinst script. There have been discussions for
a few years on how best to do this, as I didn’t
have time to properly re-write dpkg 1 instead did
a quick hack to make it run scripts that it finds in
/etc/dpkg/postinst.d/ before running the postinst
of the package.

When installing an SE Linux system the program
setfiles is used to apply the correct SIDs to all files
in the system. I have written a patch to make it
instead take a list of canonical fully-qualified file
names on standard input if run with the -s switch,
which is now included in the NSA source release.

The combination of the dpkg patch and the setfiles
patch allow me to solve the basic problem of getting
the correct SIDs applied to files, my script just
queries the package management system for a list of
files contained in the package and pipes it through



to setfiles to set the SID on each file.

The next complication is setting the correct SID
for the setfiles program, by default it gets installed
with the security type sbin_t because that is the
type of the directory it is installed in. However in
my default policy setup I have not given the dpkg_t
domain (which is used by the dpkg program when
it is run administratively) the privilege of changing
the SID of files. So the setfiles program needs to
have the type setfiles_exec_t to trigger an automatic
domain transition to the setfiles_t domain.

To solve this issue I have the preinst script (the
script that is run before the package is installed) of
the selinux package rename the /usr/sbin/setfiles
to Susr/sbin/setfiles.old on an upgrade. Then the
/etc/dpkg/postinst.d/selinuz script will run the old
version if it exists.

Here’s the relevant section of the selinuz. preinst file:

if [ ! -f /usr/sbin/setfiles.old -a \
-f /usr/sbin/setfiles ]; then

mv /usr/sbin/setfiles /usr/sbin/setfiles.old

fi

Here’s the contents of /etc/dpkg/postinst.d/selinux.
The first parameter to the script is the name of
the package that is being installed. Also I have
“grep ...” included because setfiles currently has
some problems with blank lines and /. which dpkg
produces.

#!/bin/sh

make -s -C /etc/selinux \
file_contexts/file_contexts

SETFILES=/usr/sbin/setfiles
if [ -x /usr/sbin/setfiles.old ]; then
SETFILES=/usr/sbin/setfiles.old
fi
dpkg -L $1 | grep ~/.. | $SETFILES -s \
/etc/selinux/file_contexts/file_contexts
if [ -x /usr/sbin/setfiles.old \
-a "$1" = "selinux" ]; then
rm /usr/sbin/setfiles.old
fi

4 Running Configuration Scripts in
the Correct Context

When a SE Linux system boots the process init is
started in the domain init_t. When it runs the dae-
mon start scripts it uses the scripts /etc/init.d/rc
and /etc/init.d/rcS on a Debian system (on Red
Hat it is Jetc/rc.d/rc and /etc/rc.d/rc.sysinit).
So these scripts are given the type initrc_exec_t
and there is a rule domain_auto_trans(init_t, ini-
trc_exec_t, initrc_t) which causes a transition to
the initrc_.t domain. The security policy for each
daemon will have a rule causing a domain transition
from the initrc_t domain to the daemon domain
upon execution of the daemon. This all happens as
the system_u identity and the system_r role.

When the system administrator wants to start
a script manually they use the program run_init
which can only be run from the sysadm_t do-
main, it re-authenticates the administrator (to
avoid the possibility of it being called by some
malicious code that the administrator accidentally
runs) before running the specified script as sys-
tem_u:system_r:initre_t.

This works fine when the daemon start script is
quite simple (most such start scripts just check
whether the daemon is already running and then
run it with appropriate parameters). However
this doesn’t work for complex scripts, which may
copy files, change sysctl entries via /proc, and
do many other things. An example of this is the
deuvfsd package where the start script creates device
nodes for device drivers that lack kernel support
for devfs. Getting this to work correctly required
that the code for device node creation be split
into a separate file with the same SID as the main
daemon (devfsd_exec_t) which causes it to run in
the same domain as the daemon (devfsd_t). Such
changes will probably have to be made to about
5% of daemon start scripts.

But that is part of the standard proceedure of
correctly setting up SE Linux.  The package
specific part comes when the scripts have to be
started from the package installation. To get
the correct domain (initrc_t) for the scripts I use
the rule domain_auto_trans(dpkg_t, etc_t, initrc_t)
which causes the dpkg-t domain to transition to



the initrc.t domain when a script of type etc_t
is executed. Now the hard part is getting the
identity and the role correct when running dpkg.
For this purpose I have written a customised
version of run_init to change to the context to
system_u:system_r:dpkg_t, system_u:system_r:apt_t,
or system_u:system_r:dselect_t, for the programs
dpkg, dselect, and apt-get respectively.

The apt_t and dselect_t domains are only used for
selecting and downloading packages, and then exe-
cuting dpkg, which triggers an automatic transition
to the dpkg_t domain.

5 Managing the Configuration Files

For normal configuration files in Debian (almost ev-
ery file under /etc and some files in other locations)
the file is registered as a conffile in the packaging
system, and the package status file contains the
MD5 checksum of the file. If a file is changed from
it’s original contents (according to an MD5 check)
at the time the package is upgraded and if the new
version has a different set of data for the file than
that which was provided by the old version of the
package (according to MD5) then the user will be
asked if they want to replace the old file (with
a default of no). However if the new version of
the package contains different content and the old
content was not changed, then the user will get the
new content without even being informed of the
fact!

This is OK for many files, but the idea of a file from
your audited security configuration being replaced
with one you’ve never seen is not a pleasant one!
This is only the first problem with managing policy
files, the next problem is the size of the database
for the sample policy. If you are using an initial
RAM disk (initrd) then you must have the policy
database on the initrd. The default initrd size of 4
megabytes is not large enough to accomodate the
usual modules and the complete sample policy.

So what we need to solve this is a way of having
a set of sample policy files (one per domain), of
which not all will be used, and when new policy

files are added or existing files are changed the
user must be prompted as to whether they want to
add the new files or apply the changes. Also when
adding new policy the matching entries have to be
added to the database used by setfiles for setting
the file context.

In the latest versions of the sample policy the
Makefile creates a configuration file for setfiles to
match the program configuration files used. For
every application policy file domains/program/%.te
the matching file file_contexts/program/%.fc will be
used as part of the configuration. This change will
solve the issue of determining the configuration for
setfiles, but it doesn’t entirely solve the problem.
One issue with this is that when a file is added to
or removed from the configuration the appropriate
changes need to be made to the file system. If you
make an addition to the policy before installing a
new package (the correct proceedure) then you can
usually get away without this as long as none of
the files or directories previously existed, however
this is not always the case, especially when files are
diverted or when dealing with standard directories
such as /var/spool/mail which will exist even if
you have not installed any software to use them!
It should not be that difficult to write a program
to relabel the files matching the specifications of
the added policy, the question is whether policy
additions are common enough to make it worth
saving the effort of a relabel. Also there’s the risk
that a bug in such a program (or it’s use) could
potentially cause a security hole.

The security policy is comprised of one configuration
file per application (or class of application, some
domains such as the DHCP client domain dhcpd_t
are used by multiple programs which perform sim-
ilar functions). Also sometimes an application re-
quires multiple domains which will therefore be de-
fined in the one file, for example my current pol-
icy for Postfix has eleven domains (which is ex-
cessive, I plan to reduce it to three or four once
I've determined exactly what is required). One
problem I faced with this is the issue of what to
do when one domain needs to interact with an-
other domain, for example the pppd process often
needs to run sendmail -q to flush the mail queue
when it establishes a connection. This requires the
policy statement domain_auto_trans(pppd_t, send-
mail_exec_t, sysadm_mail_t), previously such a state-
ment would be put in either the sendmail.te file or



the pppd.te file, thus making one of them depend
on the other. This is a bad idea because there’s
no reason for either of these programs to depend on
the other. The solution I devised is based on the M4
macro language (which was already used for simpler
macro functionality in producing the policy file). I
created a script to define a macro with the name
of each application policy file that is used. So the
solution to the PPP and Sendmail problem is to put
the following in the pppd.te file:

ifdef (‘sendmail.te’,
‘domain_auto_trans(pppd_t, sendmail_exec_t
, sysadm_mail_t)’)

The next problem, is how to effectively manage
things so that when I ship a new and improved
sample policy the administrator can update it
without excessive pain.

The current method involves running diff -ru and
then copying files if you like the changes. This is
excessively painful even when managing one or two
SE Linux machines! So it obviously won’t scale to
serious production. I plan to write a Perl script to
manage this, the first thing it has to do is track
when the administrator doesn’t want a policy file.
When a file is removed then the fact that the user
has chosen not to have that file installed should
be recorded, and they should not be prompted to
re-install it on the next upgrade. However if the
sample policy is upgraded and a new file has been
added then they should be asked if they want to
install it. Then when a file in the sample policy
changes and it is a file that is installed the user
should be asked if they want the new file copied
over their existing file (and they should be provided
with a diff to show what the changes would be).
Finally if such changes involve the file configuration
for setfiles then the user should be asked whether
they want to relabel the system.

The people who are working on Red Hat packaging
are considering other ways of managing the versions
of configuration files, one of which involves having
symbolic links pointing to the files to be used, if
you decide to use your own version instead of one
of the supplied policy files then you can change the
sym-link.

6 Managing Device Nodes

In Linux there are two methods of managing device
nodes. One is the traditional method of having
/dev be a regular directory on the root file system
and have device nodes created on it with mknod,
the other is the deuvfs file system which allows the
kernel to automatically create device nodes while
the devfsd process automatically assigns the correct
UID, GID, and permissions to them.

On a traditional (non-devfs) system running SE
Linux the device nodes will be labelled in the same
way as any other file. On a devfs system things
are different, the devfs policy database contains
rules for labelling device nodes. However this has
some limitations, one being that when the policy
database does not have an entry for the device
node at the time it is created, then it will never be
labelled. Another is that every type listed in the
devfs configuration rules must be defined, which
can cause needless dependencies.

To address these issues I wrote a module for devfsd
which adds support for SE Linux. This allows you
to change the mapping of SIDs to device nodes and
re-apply it at any time, and if a security context
listed in the configuration file does not exist in the
policy then an error will be logged and the system
will continue working.

This is especially useful for the case of an initrd as
the types for all the possible device nodes won’t need
to be in the ram disk.

7 Work To Be Done

Initial RAM Disk

When using an initrd to boot a modular kernel
the security policy database must be stored on the
initrd. The problem is that the default initrd size is
4M, which does not leave much space when libc6 is
included, often not enough for the policy you want.
Also even if the policy does fit you won’t really
want to have such a large initrd image. If you are



installing SE Linux on a single PC, or even on a
network of similar PCs then you are best advised to
build a kernel with all modules needed for booting
statically linked and not use an initrd. However
this is not possible for a distribution vendor who
has to support a huge variety of hardware.

Another problem with using an initrd for storing
the policy is that when you generate a new policy
you then have to regenerate the initrd to avoid
having your changes disappear on the next boot, of
course a boot script could easily load the updated
policy from the root file system before going to
multi-user mode. But it is wasteful to have a large
policy on the initrd that you then discard before
ever using much of it.

The solution is to have a small policy that con-
tains all the settings needed for either the first
stage of boot, or alternately for running recovery
tools in case a failure prevents the machine from
entering multi-user mode. Then after the machine
has passed the first stages of the boot process a
complete policy can be loaded from the root file
system, as long as the two policies don’t conflict in
any major way this should work well. NB A Major
policy conflict is a situation where the initrd defines
domains that aren’t defined in the new policy and
processes are executed in such a domain.

The latest release of SE Linux supports automat-
ically re-loading the policy when the real root file
system is mounted. Now all that needs to be done
is for someone to write a mini-policy to install on
the initrd.

Polishing run_init

Stephen Smalley has suggested that we develop a
run_init program that incorporates the function-
ality of my modified program as well as of the
original run_init program in a more generic fashion.
It is apparent that other people will have similar
needs for programs to execute programs under a
different domain, role, and maybe identity. It is
better that one program do this than to have many
people writing programs for such things.

Also currently my program is hard-coded for the
names of the Debian administration programs. An
improved program should handle the needs of De-
bian, RPM, and the regular run_init functionality.

Writing Sample Policy Files

Currently any serious system will require policy files
that are not in the sample policy. This forces ev-
eryone who uses SE Linux to start by writing policy
files (which is the most difficult and time consum-
ing task involved with the project). Currently we
are writing new sample policy files for the variety
of daemons and applications, and developing new
macros for writing policy files quickly. With the
new macros policy files are on average half the size
that they used to be (and I aim to reduce the size
again by new macros). The macros allow short pol-
icy files which are easy to understand, and therefore
the user can easily determine how to make any re-
quired changes, or how to write a policy file for a
new program based on existing programs.

8 Obtaining the Source

Currently most of my packages and source are
available at http://www.coker.com.au/selinux/
however I plan to eventually get them all into
Debian at which time I may remove that site.

I have several packages in the unstable dis-
tribution of Debian, the first is the kernel-
patch-2.4-Ism and  kernel-patch-2.5-lsm  pack-
ages which supply the Linux Security Modules
http://1lsm.immunix.org/ kernel patch. That
patch includes SE Linux as well as LIDS and some
of the OpenWall functionality. When I have time I
back-port patches to older kernels and include new
patches that the NSA has not officially released, so
often my patches will provide more features than
the official patches distributed by the NSA from
http://www.nsa.gov/selinux/index.html or the
patches distributed by Immunix. However if you
want the official patches then these packages may
not be what you desire.

From the selinuz-small archive I create the packages



selinur and libselinuz-dev which are also in the un-
stable distribution of Debian.

9

Acknowledgments

I would like to thank Stephen Smalley for being
so helpful when I was learning about SE Linux,
and Dr. Brian May for checking my early packages
and giving me some good advice when I first started.

Also thanks to Dr. May, Stephen Smalley, and Peter
Loscocco for reviewing this paper.

References

[1]

Meeting Critical Security Objectives with
Security-Enhanced Linuz

Peter A. Loscocco, NSA,
loscocco@tycho.nsa.gov

Stephen D. Smalley, NAI Labs, ssmal-
ley@nai.com
http://www.nsa.gov/selinux/ottawaOl-abs.
html/

Configuring the SELinuz Policy

Stephen D. Smalley, NAI Labs, ssmal-
ley@nai.com
http://wuw.nsa.gov/selinux/policy2-abs.
html/



