SE Linux Tutorial for Linux Kongress

Russell Coker <russell@coker.com.au>,

http://wuw.coker.com.au/

1 Introduction

The aim of this tutorial is an advanced hands-on training in administering NSA Security Enhanced Linux [1].
The Debian distribution is used because it’s support for SE Linux is better than any other distribution,
and because I did most of the Debian development work regarding SE Linux and know it well. Most of the
material covered here should apply to other distributions when they have support for SE Linux.

To install a package on a Debian system the command dpkg -i package.deb is used.

At the start of this tutorial you will have a workstation with a root password of ”1234” and a set of Debian
packages in the /root/pkg directory that can be installed. Also in the /usr/src directory there will be a
complete archive of kernel source.

2 Kernel Build

The first stage of installing SE Linux is to build a kernel with support for it. This involves firstly applying
the LSM kernel patch from http://lsm.immunix.org/ which includes the SE Linux patch. For Debian
this patch is in the kernel-patch-2.4-lsm and kernel-patch-2.5-lsm packages for the 2.4.x and 2.5.x kernels
respectively.

Install the package kernel-patch-2.4-lsm.

In the /usr/src directory you will find the file linuz-2.4.19.tar.bz2. Extract it with the command tar zujf
linuz-2.4.19.tar.bz2. Now change to the linux-2.4.19 directory that has been created and apply the kernel
patch with the command /usr/src/kernel-patches/all/apply/lsm.

After the patch is applied run the command make menuconfig to configure the kernel. There is a new
section Security options which contains the options for SE Linux and other security options. For SE Linux
turn on the options for Capabilities Support (which SE Linux requires), NSA SELinux Support, and NSA
SELinux Development Module.

If a kernel is compiled with Development support then it boots into permissive mode by default, which
means that it writes log messages instead of preventing operations. This is essential when you first setup

SE Linux, otherwise a mistake in the policy could render the machine unbootable.

We will not compile the kernel now due to lack of time.

3 First Stage of Installation (kernel and policy)

The first stage of installing SE Linux is to install the login program from the package login_20000902-
12.se1_1386.deb which is needed to assign the correct security context to the user when they login.

After this is installed then install the kernel image from kernel-image-2.4.19lsm_1_i386.deb. But DO NOT
REBOOT!

It is important not to reboot until all the other files are ready for SE operation to avoid the problems of a
partially working SE setup.

The next packages to install are the selinuz package that has the core SE Linux administrative programs, and
the selinuz-policy-default package which has sample security policy files. These are in selinux_2002070315-
9.1386.deb and selinux-policy-default_2002070313-9_all.deb respectively, and must be installed in this order.

The selinuz-policy-default package will ask you a number of questions about policy files to remove. Your
workstation has a fairly minimal configuration at the moment, so you can remove any policy files that don’t
interest you (apart from named.te and irc.te which we need for later exercises), later in the tutorial you
may install other packages so you may want to leave the policy files in place for such packages). Also please
note that the sendmail.te policy conflicts with that for other mail servers so it must be removed.

If you accidentally remove a .te file that you need, then later you can copy it to /etc/selinuz/domains/program/
from /usr/share/selinuz/policy/default/domains/program/ and run ”make -C /etc/selinuz load” .

After you have finished deciding which policy files to remove the package will then compile and install the
policy. Then it will label every file on the file system with a security type. The core of SE Linux is Domain
Type access control (known as DT). DT relies on every object (file, directory, network port, etc) having a
security type associated with it, and every process being in a security domain. So the labelling of all the
files on the file system is a very important part of the installation!

The final package to install in this phase is dpkg (the Debian packge manager). The package contains a
modified version of dpkg that will label files with the correct SE Linux type after installing them.

Now reboot the machine to use the new kernel.

4 Second Stage of Installation

In the previous section you installed the bare minimum SE Linux functionality, the SE kernel support and
a policy for the kernel to load. The policy package relabelled all files on the file system with correct types
for you. You also installed a login program to allow you to login with the correct context, and a modified
version of dpkg to allow you to install programs in the correct context.

Now login to the machine, after entering your root password you will see the following;:

lyta login: root

Password:

Last login: Fri Aug 16 03:38:02 2002 on vc/2

Linux server 2.4.191sm #1 Tue Aug 6 14:53:07 CEST 2002 i686 unknown unknown GNU/Linux

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Your default security context is root:user_r:user_t
Do you want to enter a new security context?[n]

Now this means that it will log you in with the context of root:user_r:user_t by default.

The security context is comprised of three parts, the first part is the identity which is the Unix username
that you used to login. The next part is the role which is one of the roles that are assigned to the identity
(an identity can have one role or multiple roles), role names customarily end in _r. The final part of the
security context is the domain. The domain name ends in _t, it is the determining factor for all SE Linux
security decisions. Each role is limited to a certain set of domains.

Therefore your identity (your Unix username) limits your choice of role, which determines which domain
you can use, and therefore what access you get to the system.

Now the security context of root:user_r:user_t is not what you want, you want to be able to continue doing
administration work and configuring all aspects of the system, the user_t domain is very limited. This

P

means that you need to type ”y” at the prompt to enter a new security context, giving the following result:

Your default security context is root:user_r:user_t
Do you want to enter a new security context?[n] y

Enter role (return for default) [user_r]

At this time you must type "sysadm_r” to select the system administration domain giving the following:

Do you want to enter a new security context?[n] y

Enter role (return for default) [user_r] sysadm_r
Enter type (return for default) [sysadm_t]

Now you have to press ENTER to select the default domain of sysadm “and you get a root shell with full
administrative privileges.

However there is a problem! At the time we labelled the files on the file system the machine was running
without SE Linux, so any files created after the file system was labelled but before we booted a SE kernel
will not have a type associated with them (that means any files created during the shut-down process). To
fix this we have to run "make -C /etc/selinux relabel”.

Now you want put SE Linux in enforcing mode. The program avc_toggle is used to switch between permissive
mode (where messages are logged and nothing else happens), and enforcing mode (where actions prohibited
by policy are denied. Run avc_toggle now to put the machine in enforcing mode, and notice that it informs
you of the new state by printing enforcing on the command line. Also a message such as the following will
be logged by the kernel and appear on your screen:

ave: granted avc_toggle for pid=16153 exe=/usr/bin/avc_toggle scontext=root:sysadm r:sysadm_t tcon-
text=system_u:system_r:kernel_t tclass=system

Now go to another virtual console and login as root with the default security context of root:user_r:user_t.

Notice that in the session where you are logged in with the sysadm_t domain you can run ”[s -l root”, dmesg,
and " ps auz” and get the results that you are used to. Now compare the results of the same commands in
the session that is logged in with the user_t domain.

When logged in as a non-administrative domain the ps command will only show you processes in the same
domain and in certain other domains that you have access to. You can not see daemon processes, so if the
system is running a daemon that has a security hole a hostile user will be less able to discover it’s existence
or know how to attack it. Also the root home directory is configured such that non-administrative users can
not write to it (otherwise they could replace the .bashrc with a script that does something nasty). Finally
dmesg is denied from most users so that they can’t see details of system hardware, and when their actions
are blocked by the security policy they can’t see why.

Now you have verified that SE Linux is working, try running avc_toggle again and notice that the machine
has re-entered permissive mode, this means that the login with the user_t domain can see all processes with
ps, run dmesg, etc. After verifying this run avc_toggle once more to leave the machine in enforcing mode.

At any time if you need to know the mode the machine is in you can run the program avc_enforcing, and
it will tell you. Try it now.

The next time you boot the machine you want it to run in enforcing mode, to do this run the command ” in
-s /sbin/avc_toggle /etc/re.boot” to make avc_toggle be run at boot time.

For the purposes of rest of the tutorial make sure you leave the machine in enforcing mode.

5 Installing Utility Programs

Now you have a machine that has every process running in a security domain and every file and directory
has a type associated with it. But you are unable to determine what the domains and types are!

To do this you need to install some new packages, however the regular dpkg command will not work when
SE Linux is in enforcing mode. There is a wrapper called se_dpkg which sets the correct security context
that you can use instead. These are shellutils for a modified version of id and adds the runas command,

procps for a modified ps, and fileutils adds the chcon command and has modified versions of ¢p, mv, install,
ls, mkdir, mkfifo, and mknod.

Install the packages shellutils_2.0.12-2.se1_1386.deb, procps_2.0.7-10.se1_1386.deb, and fileutils_4.1.10-2.sel_i386.deb
now by using the se_dpkg command. This command will prompt you for the password matching the identity

that you are using (in this case the root password).

Run the command id from both of your root login sessions, notice how it reports the different security
context used for the processes in each session.

Run the command ”Is —context /7 and observe the different types being used for the files.

Run the command ”ps az —context” from the sysadm_t login and observe the different security contexts
being used for the daemons.

Run the command ”Is —context ‘tty” from both sessions and observe that the tty devices have a different
type for each login. This prevents unauthorised access to a tty. To test this use the wall command, note

that when you run wall as sysadm._t all users see it, but when you run it as user_t only other users in user_t
see it.

Now login as user_r on another console and run érc to connect to the IRC server. Go to the other console
and run " ps az —context” and note how the IRC program runs in the user_irc_.t domain, now run ”ls -atr
—context” to see how the file that the IRC client creates has a different context. This is so that the IRC
client has no access to files or directories under your home directory, it can create and modify it’s own
configuration files and nothing else. Then if someone cracks the IRC client it can’t kill any programs you
run, or read or modify any files you own (apart from it’s own configuration). After writing this policy I
spent some time in IRC as root and had some amusing discussions with IRC users who seemed to think it
was a security risk and could not be convinced otherwise.

Now join the #se channel, we will use that for distributing policy samples, and for some discussion during
the tutorial. Also if you wish to discuss in German with your friends please join the #de channel as well
(unfortunately I can’t read German so I won’t be on that channel).

6 Installing Modified System Programs

Now that you have installed the utility programs you next have to install modified versions of some system
programs. Two important programs are cron and logrotate.

We need a modified version of cron to run the user cron jobs in the correct context, and it has to check
the type of the crontab file to ensure that it hasn’t been created by someone who is not authorised for that
cron domain.

We need a modified logrotate so that when it creates a new log file it gives it the same type as the old file
that has been renamed.

Install the packages cron_3.0pl1-72.se3_1386.deb and logrotate_3.5.9-10.sel1_i386.deb now.

7 Creating User Accounts

On a SE Linux machine you may want to have users with a UID=0 (root users) who are not permitted to
use the sysadm_r for administrative access. To keep them out they have to be prevented from accessing
/etc/shadow, otherwise they could run crack on the passwords.

This of course requires a mechanism for changing the password. There are wrappers for the programs
passwd, chsh, chfn, vipw, and useradd, these are spasswd, schsh, schfn, svipw, and suseradd respectively.
The main wrapper programs spasswd, schsh, and schfn do not allow specifying any parameters (so you can’t
change the password, shell, or finger details for anyone else’s account). The svipw, and suseradd wrappers
allow specifying parameters but can only be run by the administrator in domain sysadm_t. If you are logged
in as root with administrative privileges then you can change someone else’s password with sadminpaswd.

Now change the root password with spasswd, create a new user for your own use with suseradd, and edit
the user’s details with svipw.

After adding the new user you need to assign them to a role (or roles). To do this firstly edit the file
/ete/selinux/users. If you have an account named john that you want to allow for the user_r role then you

add "user john roles user_r;” to the file. If you want to grant access to the role sysadm_r as well then add
" user john roles { user-r sysadm_r };”. After saving the changes apply them with the command ”make
-C /Jetc/selinuz load”. Note that the default role is user_r, if a user is not permitted any other role then
there is no need to specifically add them to the policy. However adding the user to the policy allows syslog
messages about denied actions to include the user name (which makes it easier to determine which user is
doing things you don’t like), so it’s handy to have.

After adding an entry for a user in the users file you must set them a default security context for their
login sessions, this is determined by the file /etc/security/default_context. In the case of an account john
you would add john:user_r:user_t to the /etc/security/default_context file.

The next thing to do is to relabel their home directory to the correct type through the following commands:

find /home/john | xargs chcon -h system_u:object_r:user_home_t
chcon -h system_u:object_r:user_home_dir_t /home/john

Now install ssh from ssh_3.4p1-2.sel1_i386.deb, create a new account named test that is only authorised for
the user_r domain and tell the people on the computer next to yours the password and the IP address of
your machine so that they can login.

Now login to each other’s machines and have a look around. Try various methods of tracing what the other
person is doing on your machine as sysadm_t while they (as user_t) can’t see what you are deoing. Please
play nice when logging into each other’s machines (just in case they made a mistake).

8 Starting and Stopping Daemons

When a daemon is run it has to be run in the correct context to ensure that it gets access to the resources
it needs, and that it is denied access to everything it shouldn’t be accessing.

The daemon start scripts are run in the context system_u:system_r:initrc_t, and there are policy rules
to cause a transition from the initrc_t domain to the domain the daemon runs in. Inspect the file
/etc/selinux/domains/program/named.te and notice that it has daemon_domain(named) on line 14. The
daemon_domain macro is defined on line 932 of /etc/selinuz/macros/global_macros.te which calls the macro
daemon_base_domain on line 901 of the same file. The relevant line is line 907 which calls the do-
main_auto_trans macro to setup an automatic domain transition. When the initrc_t domain executes a
file of type named_exec_t it will be run in the new domain named_t.

For more information on SE Linux policy see Stephen D. Smalley’s paper [2].

When logged in under the sysadm_t domain you can stop a daemon in the usual fashion. To start a daemon
you need to use the run_init program to start it in the correct context, run_init will run a specified program
in the system_u:system_r:initrc_t context. Stop the named daemon now with the command ” /etc/init.d/bind

stop”, and restart it with the command ” run_init /etc/init.d/bind start”.

Now use the command ” ps ax —context — grep named” to verify that it is running and in the correct domain.

9 Adding a New User Domain

To add a new user domain second_t and role second_r edit the file /etc/selinuz/domains/user.te add the
following:

full_user_role(second)
allow system_r second_r;
allow sysadm_r second_r;

The first line creates the domain second_t, and the types second_home_dir_t and second_home_t (for the
home directory and for files under the home directory respectively), second_tmp_t for files created under
/tmp, second_tmpfs_t for shared memory created in the context of tmpfs, and second_tty_device_t and sec-
ond_devpts_t for user labelling of tty devices and pseudo-tty devices respectively. It also creates all the basic
policy rules for using these types.

The reason for having the types second_home_dir_t and second_home_t is so that the IRC client can be given
access to user which is of type second_home_dir_t but not to user/Mail which is of type second_home_t.

SE Linux does not internally support any type of object orientation, inheritance of domains/types, etc.
Also there is currently no policy language that supports such features (one could be written, but no-one
has done so yet). So to get the features we need for easily creating new domains etc we use M/ macros.

Now create a new user for use in this domain with the suseradd program, add them to the /etc/selinuz/users
file with an entry that gives them access to the role second_r (and no other roles), then run ”make -C
Jete/selinux load” to apply the new policy. Then run the following commands to apply the correct labels
to the home directory:

find /home/user | xargs chcon -h system_u:object_r:second_home_t
chcon -h system_u:object_r:second_home_dir_t /home/user

The next thing to do is set the default domain for the new role, to do this edit the file /etc/security/default_type
and add the line ” second_r:second_t”. This is for the login prompt for the domain.

Now try logging in as the new user!

10 Setting up a Chroot Environment

Now we want to setup a chroot environment running the old Debian version named Potato from the user_t
domain.

The administrator of the chroot environment can allow other people to login as root with administrative
privileges (they can add accounts, change passwords etc), but they can’t escape from the chroot. Also some
of the files in the chroot environment can be set as read-only, so that the administrative user inside the
chroot can’t change then. This is both a protection against having the chroot environment ” cracked”, and
a way of limiting what the root user inside the chroot can do.

Firstly add the line ” chroot(user, potato)” to /etc/selinux/domains/user.te. Then create the file
/etc/selinux/domains/misc/custom.te with the line ” file_type_auto_trans(user_t, src_t, potato_ro_t)’. Now
load the policy.

Now login as root in the user_r role and extract the archive /usr/src/potato.tar.bz2 with the command ” cd
Jusr/src ; tar zvjf potato.tar.bz2”. This archive includes the script mountit as follows:

#!/bin/bash -e

if ["$1" == "mount"]; then
cd $2
mount -n none -t proc proc
mount -n /dev dev --bind

fi

if ["$1" == "umount"]; then
cd $2
umount -n ‘pwd‘/proc/
umount -n ‘pwd‘/dev

fi

Also the script setperms as follows:

#!/bin/bash -e

the first parameter is the full path to the root directory
the second parameter is the name of the chroot (the second parameter to
the chroot() macro

echo cd $1

IDENTITY=‘id -c | cut -f1 -4:°¢

BASECON=$IDENTITY:object_r:$2

find home root tmp var | xargs -1300 chcon ${BASECON}_rw_t

find etc/init.d | xargs -1300 chcon ${BASECON}_dropdown_t etc/init.d
chcon ${BASECON}_ro_t var var/lib

find /var/lib/dpkg | xargs -1300 chcon ${BASECON}_ro_t

chcon ${BASECON}_super_entry_t entry

The files in the chroot are currently labelled as potato_ro_t due to the ” file_type_auto_trans(user.t, src_t,
potato_ro_t)” which causes any files or directories created under a src_t directory by the user_t domain to
be labelled as potato_ro_t.

So the before we try running anything we have to use the setperms script to label some of the files and
directories as allowing writes, the command is ” /usr/src/potato/setperms /usr/src/potato potato”.

Now to get the chroot going you first have to mount /proc and /mount under the chroot with the mountit
script, the command ” /usr/src/potato/mountit mount /usr/src/potato” will do this.

Before you try logging in to the chroot environment you have to change the root password, the command
7 ed Jusr/src/potato ; chroot . passwd” will do this.

Now we have the files setup for a chroot environment and a password in place, all we have to do is allow
logins to it by starting a syslogd daemon and a ssh daemon. I have configured the ssh daemon to run on
port 222 (so it doesn’t conflict with the main sshd), so all you have to do is run ” ¢d /usr/src/potato ; chroot
. Jete/init.d/sysklogd start” to start the system log, and ”cd Jusr/src/potato ; chroot . /etc/init.d/ssh
start” to start sshd.

References

[1] Meeting Critical Security Objectives with Security-Enhanced Linuz
Peter A. Loscocco, NSA, loscocco@tycho.nsa.gov
Stephen D. Smalley, NAT Labs, ssmalley@nai.com
http://www.nsa.gov/selinux/ottawa0l-abs.html/

[2] Configuring the SELinux Policy
Stephen D. Smalley, NAI Labs, ssmalley@nai.com
http://www.nsa.gov/selinux/policy2-abs.html/

