Partitioning a Server with NSA SE Linux

Russell Coker <russell@coker.com.au>,

http://wuw.coker.com.au/

Abstract

The requirement to purchase multiple machines is
often driven by the need to have multiple adminis-
trators with root access who do not trust each other.

Having large numbers of expensive under-utilised
servers with the associated management costs is not
ideal.

I will describe my solution to this problem using SE
Linux [?] to partition a server such that the "root”
users can’t access each other’s files, kill each other’s
processes, change passwords for each other’s users,
etc.

DOS attacks will still be possible by excessive use
of memory and CPU time, but apart from that all
the benefits of separate hardware will be provided.

1 Introduction

SE Linux dramatically improves the security of a
Linux system by adding another layer of security
in addition to the default Unix permissions model.
This is accomplished by firstly assigning a type to
every file, device, network socket, etc. Then every
process has a domain, and the level of access per-
mitted to a type is determined by the domain of
the process that is attempting the access (in addi-
tion to the usual Unix permission checks). Domains
may only be changed at process execution time. The
domain may automatically be changed when a pro-
cess is executed based on the type of the executable
program file and the domain of the process that is
executing it, or a privileged process may specify the
new domain for the child process.

In addition to the use of domains and types for ac-

cess control SE Linux tracks the identity of the user
(which will be system_u for processes that are part
of the operating system or the Unix username) and
the role. Each identity will have a list of roles that
it is permitted to assume, and each role will have a
list of domains that it may use. This gives a high
level of control over the actions of a user which is
tracked through the system. However in this paper
I am not using any of the identity or role features of
SE Linux (they merely give an extra layer of secu-
rity on top of what I am researching). So I will not
mention them again.

For a detailed description of how SE Linux works I
recommend reading the paper Peter Loscocco pre-
sented at OLS in 2001 [?]. For the details of SE
Linux policy configuration I recommend Stephen
Smalley’s paper [?].

The problem of dividing a hardware resource that
is expensive to purchase and manage among many
users is an ongoing issue for system administrators.
In an ISP hosting environment or a software devel-
opment environment a common method is to use ch-
root environments to partition a server into different
virtual environments. I have devised some security
policies and security server programs to implement
a chroot environment on SE Linux with advanced
security offering the following features:

1. An unpriviledged user (chroot administrator)
can setup their own chroot environment, cre-
ate accounts, run sshd, let ordinary users login
via ssh, and do normal root things to them
without needing any help from the adminis-
trator.

2. Processes outside the chroot environment can
see the processes in the chroot, kill them,
strace them, etc. Also the user can change
the security labels of files in their chroot to
determine which of the files are writable by a
process in the chroot environment (this can be

done from outside the chroot environment or
from a priviledged process within the chroot
environment).

3. Processes inside the chroot can’t see any sys-
tem processes, or any of the user’s processes
that are outside the chroot. They can see
which PID’s are in use, but that doesn’t al-
low them to see any information on the pro-
cesses in question or molest such processes.
The chroot processes won’t be allowed to read
any files or directories labelled with the type
of the user’s home directory. This is so that if
the wrong files are accidentally moved into the
chroot environment then they won’t be read
by chroot processes.

4. The administrator can set a user’s account for
multiple independant chroot environments. In
such a case processes inside one chroot can’t
interfere with processes in other in any way,
and all their files will be in different types.
This prohibits a nested chroot, but I think
that there’s no good cause for nested chroot’s
anyway. If someone has a real need for nested
chroot’s they could always build them on top
of my work - it would not be particularly dif-
ficult.

5. The user will have the option of running a
priviledged process inside their chroot which
can do anything to files or processes in the
chroot (even files that are read-only to regu-
lar chroot processes) but which can’t do any-
thing outside the chroot. Also if this process
runs a program that is writable by a regular
chroot process then it runs it in the regular
chroot process domain. This is to prevent a
hostile user inside the chroot from attacking
the chroot administrator after tricking them
into running a compromised binary.

A basic chroot environment has several limitations,
the most important of which is that a process in the
chroot environment can kill any process with the
same UID (or in the case of a root process any pro-
cess with any UID) outside the chroot environment.
The second major limitation is that root access is
needed to call the chroot() system call to start a ch-
root, environment and this gives access to almost ev-
erything else that you might want to restrict. There
are a number of other limitations of chroot environ-
ments, but they are all trivial compared to these.

One method of addressing this issue is that of GR se-
curity [?]. GR Security locks down a chroot environ-
ment tightly, preventing fchdir(), mount(), double-
chrooting, pivot_root(), and access to non-chroot
processes (or processes in a different chroot). It also
has the benefit that no extra application configura-
tion is required. However it has the limitation that
you have very limited ability to configure the capa-
bilities of the chroot, and it has no solution to the
problem of requiring root access to setup the chroot
environment.

Another possible solution to the problem is that of
BSD Jails [?]. A jail is a chroot environment that
prevents escape and also prevents processes in the
jail from interfering with processes outside the jail.
It is designed for running network servers and al-
lows confining the processes in a particular jail to a
single TP address (a very handy feature that is not
available in SE Linux at this time and which I have
to emulate in a shared object). Also the jail authors
are working on a jailinit program which is similar
to init but for jails (presumably the main difference
is that it doesn’t expect to have PID==1), this pro-
gram should work well for chroot environments in
SE Linux too.

Another possible solution is to use User-Mode
Linux [?]. UML is a port of the Linux kernel to the
Linux system call interface. So it can run a kernel
as a user (UID!=0) application using regular files on
the file system for storage. One problem with UML
is that it is based around file system images on disk,
so to access them without the UML kernel running
you have to loopback mount them which is incon-
venient. Also starting or stopping a UML image
is equivalent to booting or shutting down a server
(which is inconvenient if you just want to run a sim-
ple command like last). A final problem with UML
for hosting is that using file systems for storage is
inefficient, if you have 100 users who each might use
1G of storage (but who use on average 50M) you
need 100G of disk space. With chroot based sys-
tems you would only need 5G of disk space. Finally
backing up a file system image from a live UML
setup will give a corrupted file system, backing up
files from a chroot is quite safe.

2 Isolation of the Chroot

The first aim is to have the chroot environment be
as isolated as possible from other chroot’s, from the
chroot administrator, and from the rest of the sys-
tem. This is quite easy as SE Linux defaults to
denying access (apart from the system administra-
tion domain sysadm_t which has full access to see
and kill processes, read files, etc).

For example pivot_root, is denied by not giving the
sys_admin capability. Access to other processes is
denied by not permitting access to read from the
/proc directories, send signals, ptrace, etc. fchdir()
is prevented because processes in the chroot don’t
get access to files or directories outside the chroot
because of the type labels, so it can only fchdir()
back into the chroot! Mount and chroot accesses
are also not granted to the chroot environment, nor
is access to configure network interfaces.

The next aim is to make a chroot environment more
secure than a non-SE system in full control of the
machine. The first step to this is having critical re-
sources such as hard drive block devices well out of
reach of the chroot environment. With a default SE
Linux security policy (which my work is based on)
that is already achieved, a regular root process that
is not chrooted will be unable to perform such ac-
cess. This isolation of block devices, the boot man-
ager, priviledged system processes (init, named, au-
tomount, and the mail server) from the rest of the
system already makes a chroot environment on SE
Linux more secure than that on a system without
SE Linux, most (hopefully all) attacks against such
critical parts of the system that would work on other
systems will be defeated by SE Linux.

One problem that I still have not solved to my sat-
isfaction is that of not requiring super-user access
to initially create the chroot environment. I have
developed policy modifications to allow someone to
login as root (UID==0) in a non-chroot environ-
ment and not have access to cause any damage.
So for my current testing I have started all chroot
environments from a root login in a user domain
as the chroot and mount operations require root
privileges. For production use you would proba-
bly not want to give a user-domain root account
to a user, so I am writing a SUID root program
for running both mount and chroot to start a ch-
root environment and to run umount to end such
an environment (after killing all the processes). It

will take a configuration file listing the target direc-
tory, the bind mounts to setup, and the programs
to run. One issue that I initially had with this was
to make sure that it only runs on SE Linux (if SE
Linux was removed but the application remained
installed then you would grant everyone the ability
to run programs as root in an unrestricted fashion
through chrooting to the root directory). My cur-
rent method of solving this is to execute /bin/false
at the start of the program, if SE Linux blocks that
execution then it indicates that SE Linux is in en-
forcing mode (otherwise the program ends). Also it
directly checks for the presence of SE Linux (so if the
administrator removes /bin/false then it won’t give
a false positive). However this still leaves the cor-
ner case where an administrator puts the machine in
permissive mode and removes /bin/false. To avoid
this the program will then try reading /etc/passwd
which will always be readable on a functional Unix
machine unless you have SE Linux (or some simi-
lar mechanism) in place. Before running chroot the
wrapper will change directory to the chroot target
and run ”chroot .”. My policy prohibits the chroot
program from accessing any directories outside the
chroot environment to prevent it from chrooting to
the wrong directory, thus an absolute path will not
work. Chroot administrators would be confused by
this, so the wrapper hides it from them.

I believe that this method will work, but I have not
tested it yet.

3 Domains

It would be possible to create a SE Linux policy to
allow a chroot to have all the different domains that
the full environment has (IE a separate security do-
main for each daemon). However this would be a
huge amount of work for me to write the policy and
maintain it as new daemons become available and
as new versions of daemons are released with differ-
ent functionality. It would result in a huge policy
(number of daemons multiplied by number of ch-
root environments could result in a large number
of domains) which is currently held in non-pageable
kernel memory. In a future version of SE Linux they
plan to make it pageable, but the fact that a large
policy has a performance impact will remain. Also
the typical chroot administrator does not want the
bother of working with this level of complexity. Fi-
nally the limited scope of a chroot environment (no

dhcp client, no need to run fsck or administer RAID
devices, etc) reduces the number of interactions that
can have a security impact, and as a general rule
there is a security benefit in simplicity as mistakes
are less likely.

In my current policy I have a single domain for the
main programs in the chroot environment. This do-
main has write access to files under /home, /var,
/tmp, and anywhere else that the chroot admin-
istrator desires (they can change the type of files
and directories at any time to determine where pro-
grams can write, the writable locations of /home,
/var, and /tmp are merely default values that I rec-
ommend - they are not requirements). Typically the
entire chroot would default to being writable when it
is installed and the chroot administrator would be
encouraged to change that according to their own
security needs. In the case of a chroot setup with
chroot(etbe, etbe_apache) the main domain will be
called etbe_apache_t.

I have been considered having a separate domain
for user processes inside the chroot so that they can
only write to files under /home (for example) and
not /var (which would only be writable by system
processes). To implement this would require either
an automatic domain transition rule to transform
the domain when running a user shell (as opposed
to a shell script run by a system program), or a
modified sshd, ftpd, etc. Requiring that chroot ad-
ministrators use modified versions of standard pro-
grams is simply not practical, most users would be
unable to manage correct installation and would re-
quire excessive help from the system administrator,
also it might require significant programming to pro-
duce modified versions of some login programs. This
leaves the option of automatic transitions. Doing
this would require that a chsh inside the chroot not
allow changing the shell to /bin/sh or any other
shell that would be used by system shell scripts,
and that all shells listed in /etc/shells be labelled
as user shells. This requires a significant configura-
tion difference between the chroot setup and that of
standard configurations, that is difficult to maintain
because of distribution packages and graphical sys-
tem administration tools that would tend to change
them back.

I conclude that having a separate domain for user
processes is not feasible.

The next issue is administration of the chroot. Hav-
ing certain directories and files be read-only is great

for security but a pain when it is time to upgrade!
This is a common problem for administrators who
use a read-only mount for their chroot environment.
To solve this issue I have created a domain which
has write privileges for all files in the chroot, for the
example above the name of this domain would be
etbe_apache_super_t. This domain also has control
over all processes in the chroot (ability to see them,
kill them, and ptrace them), while the processes in
the chroot can not even determine the existance of
such super processes. If this process executes a file
that is writable by the main chroot domain then it
will transition to the main chroot domain, so that if
a trojan is run it will not be able to damage the read-
only files. This protection is not perfect however,
using the source command or /bin/sh < script
to execute a shell script will result in it being run
in the super domain. However I think that this is a
small problem, tricking an administrator into redi-
recting input for a shell from a hostile script or us-
ing the source command is very difficult (but not
impossible). However it is quite easy for an admin-
istrator to mistakenly give the wrong label to files
and allow them to be written by the wrong people (I
made exactly this mistake when I first set it up), so
preventing the execution of binaries that may have
been compromised is a good security measure.

Note, that this method of managing read-only files
does not require that applications running in the ch-
root environment be stopped for an upgrade, unlike
most other methods of denying write access to files
that are in use.

To have a working chroot environment you need a
number of device files to be present, pseudo-tty files
(for logins and expect), /dev/random (for sshd),
and others. The chroot administrator can not be
permitted to create their own device nodes as this
would allow them to create /dev/hda and change
system data! So I have created a special mount
domain which in this example would be named
etbe_mount_t based on Brian May’s mount policy
to allow bind mounts of these device nodes. This
does have one potential drawback, if you are deny-
ing a domain access to device nodes solely by deny-
ing search access to /dev then bind mounts could
be used to allow access in contravention of security
policy! I could imagine a situation where someone
would want to allow a domain to access the pseudo-
tty it inherits from it’s parent but not open other
pty’s of the same type, and implementing this by
denying access to the /dev/pts. This is not some-
thing that I would recommend however. I believe

that this is the best solution, as not having a user
mount domain would require that either the system
administrator create bind mounts (a process that
has risks regarding sym-links etc), create special de-
vice nodes (having two different device nodes for the
same device with different types is a security issue),
or otherwise be involved in the setup of the chroot
in a fashion that involves work and security risks.

In summary, if you have the bad idea of restricting
access to the /dev directory to prevent access to de-
vice nodes then things will break for you, however
there are many other ways of breaking such things
so I think that the net result is that security will
not be weakened.

To actually enter the chroot environment you need
to execute the chroot() system call. To allow that I
created a domain for chroot, which in this example
will be called etbe_chroot_t, this domain is entered
when the user domain etbe_t executes the chroot
program. Then when this domain executes a file
of type etbe_apache_ro_t or etbe_apache_rw_t it will
transition to domain etbe_apache_t, and when it ex-
ecutes a file of type etbe_apache_super_entry_t it will
transition to domain etbe_apache_super_t.

4 Types

The primary type used for labelling files and di-
rectories is for read/write files, in the case of a ch-
root setup by chroot(etbe, etbe_apache) the type will
be etbe_apache_rw_t. It can be read and written by
etbe_apache_super_t and etbe_apache_t domains, and
read by the etbe_chroot_t and etbe_mount_t domains.
It can also be read and written by the user domain
etbe_t.

The type etbe_apache_ro_t is the same but
can only be written by the user domain and
etbe_apache_super_t.

To enter as domain etbe_apache_super_t 1 have de-
fined a type etbe_apache_super_entry_t. The aim of
this is to allow easy entry of the administration do-
main by a script, otherwise I might have chosen to
have a wrapper program to enter the domain which
prompts the user for which domain they want to
enter. The wrapper program idea would have the
advantage of making it easier for novice chroot ad-
ministrators, and I may eventually implement that

too so that users get a choice.

One problem I found when I initially setup
a chroot was that when installing new De-
bian packages the post installation scripts (run-
ning in the etbe_apache_super_-t domain) started
a daemon (such as sshd) it would also start as
etbe_apache_super_t, and then a user could login
with that domain! To solve this problem I cre-
ated a new type etbe_apache_dropdown_t, when the
etbe_apache_super_t executes a program of that type
it transitions to etbe_apache_t, so labelling the
/etc/init.d directory (and all files it contains) with
this type causes the daemons to be executed in the
correct domain. The write access for this type is the
same as that for etbe_apache_ro_t.

5 Configuring the Policy

I have based my policy for chroot environments
around a single macro that takes two parameters,
the name of a user domain, and the name of a ch-
root. For example if I have a etbe_t domain and I
want to create a chroot environment for apache then
I could call chroot(etbe, etbe_apache) to create the
chroot.

This makes it convenient to setup for a basic chroot
as all the most likely operations that don’t com-
prise a security risk are allowed. Naturally if you
have different aims then you will sometimes need to
write some more policy. One of my machines runs
a chroot environment for the purpose of running
Apache, it required an extra fourteen lines of SE
policy configuration to allow the Apache log files to
be accessed by other system processes outside the
chroot (a script that runs a web log analysis pro-
gram in particular).

The typical chroot environment used for an Internet
server will probably require between 5 and 20 lines
of extra policy configuration and will take an expe-
rienced administrator less than 30 minutes to setup.
Of course these could be added to custom macros
allowing bulk creation with ease, setting up 500 dif-
ferent chroot environments for Apache should not
take more than an hour!

Here is my policy for an Apache web server run in
the system_r role by the system init scripts that has
read-only access to all files under /home (which is

—bind mounted inside the chroot), and which allows
logrotate to run the web log analysis scripts as a

cron job.

setup the chroot

chroot (initrc, apache_php4)

allow apache to change UID/GID and to bind to the port

allow apache_php4_t self:capability { setuid setgid net_bind_service };
allow apache_php4_t http_port_t:tcp_socket name_bind;

allow apache_php4_t tmpfs_t:file { read write };

allow apache to search the /home/user directories

allow apache_php4_t user_home_dir_type:dir search;

allow apache to read files and directories under the users home dir
r_dir_file(apache_php4_t, user_home_type);

allow logrotate to enter this chroot (and any other chroot environments

that are started from initrc_t)

domain_auto_trans(logrotate_t, chroot_exec_t, initrc_chroot_t)

this chroot is located under a users home directory so logrotate needs to
search the home directory (x access in directory permissions) to get to it
allow logrotate_t user_home_dir_t:dir search;

allow logrotate to search through read-only directories (does not need read

access) and read the directories and files that the chroot can write (the

web logs).
it more than it needs?

allow logrotate_t apache_php4_ro_t:dir search;

r_dir_file(logrotate_t, apache_php4_rw_t)

NB I do not need to restrict logrotate this much - but why give

allow a script in the chroot to write back to a pipe created by crond
allow initrc_chroot_t { crond_t system_crond_t }:fd use;

allow initrc_chroot_t { crond_t system_crond_t }:fifo_file { read write 1};
allow apache_php4_t { crond_t system_crond_t }:fd use;

allow apache_php4_t { crond_t system_crond_t }:fifo_file { read write };

That’s 14 lines because I expanded it to make the
policy clearer. Otherwise I would probably com-
press it to 10 lines.

6 Networking

The final issue is networking, the BSD Jail facility
has good support for limiting network access via a
single IP address per jail.

SE Linux lacks support for controlling networking in
this fashion, server ports can only be limited by the
port number. This is OK if different chroot environ-
ments provide different services. Also this works if
you have an intelligent router in front of the server
to direct traffic destined for different IP addresses
to different ports on the same IP address (in which
case the different chroot environments can be given
permissions for different ports).

I have an idea for another solution to this problem
which is more invasive of the chroot environment.
The idea is to write a shared object to be listed in
/etc/ld.so.preload which will replace the bind() sys-
tem call. This will then communicate over a Unix
domain socket (which would be accessed through a
bind mount) to a server process run with system
privileges, and it will pass the file descriptor for the
socket to it. The server process will then use the
accept_secure() system call to determine the secu-
rity context of the process that is attempting the
bind, it will then examine some sort of configura-
tion database and decide whether to allow the bind,
or whether to modify it. If the bind parameters
have to be modified (for example converting a bind
to INADDR_ANY to be a bind to a particular IP
address) then it would do so. Then it would do a
bind() system call and return a success code to the
socket that connects to the application.

This support would be ideal as it would be easiest
to automate and would allow setting up hundreds or

thousands of chroot environments at the same time
with ease.

Unfortunately I couldn’t get this code fully written
in time for the publishing deadline.

7 Conclusion

I believe that I have achieved all my aims regard-
ing secure development environments or other situa-
tions where there is no need to run network servers.
The policy provides good security and allows easy
management.

My current design for entering a chroot environment
should work via a SUID root program, but I will
have to test it. The current method of allowing un-
privileged root logins has been tested in the field
and found to work reasonably well.

Currently the only issue I have not solved to my
satisfaction is that of binding chroot environments
to specific IP addresses. Currently the best option
that I have devised involves pre-loading a shared
object into all processes in the chroot environment
(which will inconveniance the user). But I have not
yet implemented this so I am not certain that it will
work correctly.

References

8 Obtaining the Source

Currently most of my packages and source are avail-
able at http://www.coker.com.au/selinux/ how-
ever I plan to eventually get them all into Debian
at which time I may remove that site.

I have several packages in the unstable distribu-
tion of Debian, the first is the kernel-patch-2.4-
lsm and kernel-patch-2.5-lsm packages which supply
the Linux Security Modules http://lsm.immunix.
org/ kernel patch. That patch includes SE Linux
as well as LIDS and some of the OpenWall func-
tionality. When I have time I back-port patches to
older kernels and include new patches that the NSA
has not officially released, so often my patches will
provide more features than the official patches dis-
tributed by the NSA from http://www.nsa.gov/
selinux/index.html or the patches distributed by
Immunix. However if you want the official patches
then these packages may not be what you desire.

From the selinuz-small archive I create the packages

selinuz and libselinux-dev which are also in the un-
stable distribution of Debian.

9 Acknowledgments

Thanks to Dr. Brian May for reviewing this paper
and providing advice.

[1] Meeting Critical Security Objectives with Security-Enhanced Linuz

Peter A. Loscocco, NSA, loscocco@tycho.nsa.gov
Stephen D. Smalley, NAI Labs, ssmalley@nai.com
http://www.nsa.gov/selinux/ottawa0l-abs.html/

[2] Configuring the SELinux Policy

Stephen D. Smalley, NAI Labs, ssmalley@nai.com
http://www.nsa.gov/selinux/policy2-abs.html/

[3] GRSecurity Site
Brad Spengler, spender@grsecurity.net
http://wuw.grsecurity.org/papers.php/

[4] Jails: Confining the omnipotent root
Poul-Henning Kamp, phk@FreeBSD.org

Robert N. M. Watson, rwatson@FreeBSD.org
http://docs.freebsd.org/44doc/papers/jail/jail.html/

[5] User-Mode Linux
Jeff Dike, jdike@karaya.com

http://user-mode-linux.sourceforge.net/

