
MCS - adding MLS features to the targeted policy

Russell Coker 〈rcoker@redhat.com〉,
http://www.coker.com.au/selinux/

Red Hat

Abstract

It has become apparent that many people want some of
the benefits of MLS but in a way that is easier to use than
the full MLS implementation.

MCS (Multi-Category Security) is a change to policy
that applies to both strict and targeted policies (it is in
strict and targeted in rawhide). It uses the categories of
MLS but makes no use of the sensitivity field (all pro-
cesses have sensitivity s0). The initial design of MCS is
based around the targeted policy so it has the same ini-
tial aims (minimising the cost of implementation for end-
users). However MCS is used in the strict policy as well
and provides the same confidentialiy benefits for strict as
for targeted.

MCS operates in addition to the type enforcement
model and is designed to be used primarily for protecting
data confidentiality while type enforcement will be used
for protecting system integrity. It is an optional feature
which is always enabled but will not have an impact on
anyone who doesn’t choose to use it.

1 Introduction

The primary characteristic of MLS [1] is that it has mul-
tiple security levels. Each level is comprised of a clas-
sification and an optional set of compartments. Names
such as Top Secret, Secret, Classified, and Unclassified
are often used for the classification. There is no techni-
cal requirement that there be four classifications (there
could be more or fewer), or that those names be used. In
the default SE Linux MLS policy there are 16 classifica-
tions with id codes from s0 to s15, the translation table
may map some of those to the traditional four names.

In a MLS system the primary aim is to prevent ”read
up” or ”write down”. ”Read up” means reading data that
is classified at a level higher than the process that is read-

ing it, for example a process which has a clearance level
of Secret can not read data from a file classified at the
level of Top Secret. ”Write down” means writing data
into a level lower than the process that is writing it, for
example a process which has a clearance of Secret writ-
ing to a file classified as Unclassified. Preventing ”read
up” and ”write down” means that both intentional release
of secret data to processes/people that lack appropriate
clearance and accidental release via mistakes or trojan
horse programs is prevented.

It is permitted to ”write up” and ”read down”. In prac-
tice this means that a document can be written at a Top
Secret classification which is based on data from Secret,
Classified, and Unclassified categories. Also a process
with Unclassified clearance could write to a file classi-
fied as Top Secret.

There is another issue of integrity which is addressed
in SE Linux by using the domain-type model. SE Linux
has not (and will not) implement the BIBA integrity
model that is conceptually similar to MLS as it is felt that
the domain-type model is a better solution to the prob-
lem.

Classifications are not adequate to fully describe the
security needs of military agencies or the computer sys-
tems that they use. It is common that people will not
be permitted to read data that is at a classification that
they have clearance for but is in a different area (project,
organization, etc). To implement this the MLS model
includes a feature known as Categories. Every process
in the MLS model has a clearance that includes zero or
more categories. Each file that may be accessed will have
a sensitivity which is comprised of the classification and
zero or more categories. If the set of categories for which
the process is cleared is not a super-set of the categories
with which the file is classified then the file can not be
read.

In a commercial environment you might have cate-

gories for each NDA agreement that you sign with an-
other company, for each secret research and development
project, and for information that can’t be released due to
insider trading laws.

2 SE Linux Implementation of MLS

SE Linux provides a MAC system that is a second layer
of defense, Unix permissions are the first line of defense.
So you may have multiple users who have the same SE
Linux security context who keep their data secret from
each other through Unix permissions.

The primary feature of SE Linux is the domain-type
model. In this model every process (subject) has a do-
main associated with it and every object that a process
may access has a type associated with it. At the core of
SE Linux is a database which describes for every combi-
nation of domain and type the access that is to be granted
at a fine granularity [2]. For example file access is di-
vided into create ioctl read getattr lock write setattr ap-
pend link unlink rename.

Until recently the vast majority of SE Linux users did
not use the MLS features. The most popular implemen-
tation of SE Linux has been in the Red Hat distribu-
tions, Fedora Core and Red Hat Enterprise Linux. In
Fedora we have two policies, strict and targeted. The
strict policy aims to grant minimal privileges to each pro-
cess while the targeted policy has a domain named un-
confined t that has no restrictions and runs all programs
from login sessions in that domain. The targeted policy
aims to reduce the cost (in terms of administration work)
of using SE Linux as much as possible.

3 Problems with MLS on Linux

One major issue for implementing MLS is that it doesn’t
work well with the Unix design. A design goal of SE
Linux has been to work well with unmodified versions
of commonly used software as much as possible. It is
important for the success of SE Linux that it is not con-
sidered to be unreasonably difficult for administrators,
users, or programmers. Many programs perform opera-
tions such as opening a file as read/write when they only
need write access. This is not seen as a problem and de-
velopers often are reluctant to change such code.

Bad coding practices such as this are a significant ob-
stacle to the development of MAC systems on Unix, get-
ting programs changed to work well with the strict pol-
icy has been a constant battle even though most of the
changes required for that are generally agreed to be good
based on community standards for Unix program design.

One common example of a change that is required for
the strict policy is inheritance of file handles. When a
process running as root spawns another process running
as root it’s often not considered a big problem if all the
file handles are allowed to be inherited, of course if they
get inherited by a non-root process it becomes a problem.
Also if a bug in a child process causes it to write to the
wrong file handle it could interfere with the operation of
the parent. Prior to the release of SE Linux there was no
convenient way for the administrator to track which file
handles were being inherited. SE Linux implements two
permission checks for file handle inheritance, there is a fd
use permission to determine whether the a process may
receive a file handle from a process in a different domain
(which may not be the parent, it may be a grand-parent
process, or the file handle may have been transferred over
Unix domain sockets). The other permission check is to
determine whether the process inheriting the file handle
is permitted the access (either read, write, or read/write)
that was used when the file handle was opened. Due
to these checks many bugs have been found and fixed
in commonly used programs (one can only imagine the
number of instances of inappropriate file handle inheri-
tance in cases where there is no domain transition and
therefore SE Linux does not log it).

The difference with MLS related changes is that peo-
ple believe that there is little reason for implementing
such changes in a non-MLS environment. In the tradi-
tional Unix design it’s usually regarded that a process
with write access to a file should have read access as well.
The aim of access control in Unix has traditionally been
primarily to protect system integrity not data secrecy.

The goal for protecting secrecy is that a process which
can read everything should have write access to few files
to prevent writing secret data to the wrong place, and
that a process with wide write access should not be able
to read secret data so that the public files it writes to will
not contain any secrets. The traditional Unix design for
protecting system integrity has been to have processes
with high integrity that are permitted to do whatever they
want.

Note that these problems do not impede our work on
getting LSPP certification for SE Linux systems. Get-
ting MLS working with the programs that are required
for LSPP certification is not that difficult, it’s getting it
working with all the programs in Fedora which is so dif-
ficult as to be almost impossible!

The problems with getting wide spread developer sup-
port for the full MLS policy is the easy part of the prob-
lem. The most difficult part is in training users. Teach-
ing the typical users and system administrators about
the concepts involved with this will be difficult. Teach-
ing them how to use it in practice with symbolic names

2

for MLS contexts and ranges for processes would be in-
sanely difficult.

I am obliged to note that shortly before completing the
final draft of this paper I gave demonstrations of MLS
on Fedora Core 5 Test 2 to delegates at the 2006 Linux
Conference Au and it received positive reviews. Given
that some people are describing MLS as cool I guess that
there is a possibility for it to be used in home systems.
There’s no accounting for taste.

4 The Design of MCS

MCS is an extension to both the strict and targeted poli-
cies which was mostly designed for the targeted policy.
It aims to allow categorising data without increasing the
difficulty of system administration. The full MLS model
is not suitable for most users for the reasons described
above, but we believe that there is a need for something
more than the domain-type model to protect data secrecy.

People who are used to using either the targeted or
strict policies will have those options available. MCS
can be considered an additional layer of protection ap-
plied after the controls of targeted or strict policies.
MCS is also designed to be transperant, so a major de-
sign goal (which is fully achieved) is to have MCS make
no impact on users who choose not to use it. It is possi-
ble to use the type enforcement features of SE Linux and
ignore the existence of MCS.

To avoid the full cost of MLS it was decided that clas-
sifications would not be used. The SE Linux design per-
mits using a policy that has no reference to MLS (no clas-
sifications or categories defined) which has been com-
monly used in the past. However there is no support for
a policy without classification but only categories, so for
MCS we just define a policy with only a single classi-
fication with code s0. For a MLS SE Linux policy the
default configuration is to have classifications with codes
s0 to s15 inclusive).

The other significant change in the MCS policy is that
instead of preventing read-up and write-down we instead
only permit reading or writing to a context that is dom-
inated by the context of the process. This means that a
process can read and write a file if it posesses a superset
of the categories that are assigned to the file and will not
get either read or write access otherwise. The general
expectation among Unix users and administrators is that
granting extra privileges to a process will only add to the
set of actions that it is permitted to perform, as opposed
to the MLS expectation that permitting a process to read
from more secret data should also deny it from writing
to less secret data. This change means that the MCS pol-
icy does not support the Bell La-Padula (BLP) security

model or a sub-set of it, so MCS is not a cut-down MLS
policy, it is an entirely different policy that uses the same
kernel and policy language features!

This is required to permit operatiion in a manner that
most system administrators expect. It is expected behav-
ior that if you can write to a file then you can read it.
In fact many programs open files with read/write access
when they only want to write to them and thus fail to
perform as expected on MLS systems.

In some ways MCS categories act in a similar manner
to Unix supplemental group IDs with the added benefit
that the user can drop categories that they don’t need for
a particular task. This fits well with the practices of Unix
users while also adding some significant benefits. With
Unix groups it is not possible for a non-root process to
easily drop access to groups that are not needed. There
is a limit of a small number of groups (we are working
with a default of 256 categories for MCS and more can
easily be added). Also there is no method of labelling a
file on disk for supplemental groups, in Unix a file must
have exactly one GID.

Of course the down-side of breaking the no-read-up
and no-write-down convention of MLS is that under the
MCS policy information leaks will be possible, a process
that has categories c0 and c1 can read data from a file
classified with category c0 and write it to a file classified
with category c1. In cases where it is necessary to stop
accidental leaks it will be necessary to prevent one pro-
cess from having both the categories in question. It is my
observation that in most non-military environments this
is not considered a problem, I belive that someone who is
permitted to access two different categories of data will
be trusted not to read data from a file of one category
and write to a file of another. Note that MCS does not
attempt to deal with the problem of a hostile user or a
trojan horse program that wants to maliciously relabel
files with fewer categories or copy data to a file that has
fewer categories than the source file.

5 Uses of MCS

One of the primary design aims of the MCS policy was
to support corporate environments where different cate-
gories of data are used. This is the most obvious real-
world use for it.

Another possible use is for multiple instances of a pro-
gram. Currently if you want to have two copies of a pro-
gram running which are not permitted to interact with
each other then you need to modify the policy to have
two domains (there is work in progress to make this rel-
atively easy, but at the moment it’s inconvenient). For
example you could start two copies of a program with

3

the commands runcon -l s0:c200 program and runcon -
l s0:c201 program. This would spawn two instances of
the program which would not be able to directly interact
with each other and which by default would create files
that the other instance could not read or write.

Finally I can imagine MCS being used on University
shell servers. On such machines trojan horse attacks are
common, so the ability for an unprivileged user to easily
run a process with reduced access to the system so that
it could not cause damage would be very useful. When I
first started work on SE Linux sys-admins often asked me
whether unprivileged users could use SE Linux to restrict
the access of their own processes. At the time it was un-
fortunately unreasonably inconvenient for both the sys-
tem administrator and the user to implement such sys-
tems. The only viable option for the administrator was
to define a large number of roles for the user in question
this would significantly increase the size of the policy
and therefore the amount of kernel memory used. Now
with the MCS policy every user can easily run programs
with restricted access.

There are probably other uses of MCS that will be dis-
covered when it is widely available in Fedora Core 5.
The close ties between the design of MCS and the tra-
ditions of Unix system administration will make it easy
for the typical sys-admin to work with. Because of this
I expect that users will rapidly devise uses of MCS that
I have not considered. Note that I expect more devel-
opments in this regard on the Fedora platform than on
the Red Hat Enterprise Linux platform because Fedora
machines tend to have a more experimental nature. The
same also applies for the Debian and Gentoo distribu-
tions which also are popular among home users and stu-
dents.

6 Mandatory aspects of MCS

The initial release of MCS was advisory. It permitted a
process to launch a child process with more MCS access
rights, the domain-type feature of SE Linux and Unix
permissions were relied on for access control.

I have been working on making MCS enforcing. This
means that a process can not launch a child with any
MCS categories that it doesn’t posess, it can’t debug a
process that has such categories, or kill it. It can how-
ever launch a child with less categories and there is no
restriction on doing so.

The next issue regarding mandatory MCS is the de-
fault category assignment of files. With the MLS kernel
code in SE Linux a sensitivity label may have a range.
For labels on processes ranges are used and the low level
of the range is used for the default level of files which

it creates (ranges are not used for files and directories
- the low and high levels are forced to be equal). The
default sensitivity of a process for a user shell in MCS
is s0-s0:c0.c255 which means that it has a range from
s0 (no categories) to s0:c0.c255 (all 256 categories). In
this case the default sensitivity of files will be s0. How-
ever we can configure the MCS policy via the seman-
age tool to specify a different default low level of the
sensitivity range. For example a user could have the
range s0:c0.c100-s0:c0.c200, this means that it can ac-
cess files with categories from the set c0.c200 (all cate-
gories from c0 to c200 inclusive) and that the default sen-
sitivity of any files it creates will be s0:c0.c100. It would
be denied access to categories outside the set c0.c200
but would be permitted to execute a child process with
a set of categories which is a sub-set of that. Also it
could execute a child process with a low level that is
any sub-set of the high level. Valid sensitivity ranges
that may be used for child processes include s0:c0.c199-
s0:c0.c200, s0:c0.c200-s0:c0.c200 (which is equivalent
to s0:c0.c200), and s0:c0.c5-s0:c0.c199.

In the MLS policy there are restrictions on setting the
low sensitivity of the range. I considered placing such
restrictions on the MCS policy. What could be done is
to prevent a user from launching a process with a low
level which is lower than the low level of it’s parent and
also preventing a process from relabeling a file to a level
that’s below it’s low level.

An example of using this could be to make the low
level for users in the HR department include the HR cat-
egory. This would mean that every process they launch
would have the HR category in the low level (of course
they could increase the low level and add other categories
for which they are authorised) and they could not create
any files which lack that category. This would mean that
every file created by a user in the HR department would
have the HR category.

I am not sure that the benefits of this outweigh the
costs. At the moment my plans for MCS involve hav-
ing the only restriction of the low level of a process be
that it is dominated by the high sensitivity.

s0:c0=HR
s0:c1=Financial
s0:c0,c1=HR&Financial
s0:c0-s0:c0,c1=HR-HR&Financial

In a corporate environment the administrator might use
the above in the setrans.conf file to name the HR and
Financial categories. A user who works for the HR de-
partment might have a default MCS sensitivity range of
s0:c0-s0:c0.c1 which is known as HR-HR&Financial.
This means that by default files will be created with the

4

sensitivity label of s0:c0 AKA HR but that files with the
Financial category (c1) can also be accessed. The user
in question would also be permitted to request that a file
they create be labeled as HR&Financial (useful for copy-
ing files), and they would be permitted to relabel files
between s0, all combinations of the HR and Financial
categories.

7 Migrating to the MCS Policy

One significant issue when developing new policy is to
allow users to easily migrate to it.

When labelling files and directories on disk each file
system object has an XATTR named security.selinux that
contains the security context for the object. If an object
has a security context which does not match the policy
which is in use then it is given the type unlabeled t which
prevents access to all processes other than those run by
the system administrator. In the previous versions of the
SE Linux kernel code if a file had a security context with-
out the MLS components then it would get the type unla-
beled t which made an upgrade from a non-MLS system
to MLS or MCS more difficult than necessary. A recent
change in the kernel code assigns a default sensitivity la-
bel of s0 to such files. So when upgrading a machine
to the MCS policy all files will have label s0 which is
exactly what we desire for an initial MCS installation.

This was the only kernel change related to the MCS
policy, and it applies equally well to the MLS policy. Due
to the flexibility designed into the SE Linux policy lan-
guage the design of the MCS policy did not require any
kernel code changes!

8 Integrating MCS into a Distribution

Supporting MCS in a distribution requires a lot more
work than just adding it to the policy. It has to be possible
to manage the labelling of files and processes in a manner
that’s not overly difficult. The basic support for changing
the security contexts of files and preserving the context
when copying files and backing them up has been in Fe-
dora since Fedora Core 2. One of the issues with MLS
is that only certain combinations of categories may make
sense. So we need to have a method of translating MLS
contexts to a human readable form. In rawhide we cur-
rently use the file /etc/selinux/X/setrans.conf (where X
is the name of the policy, either targeted, strict, or mls to
store translations from MLS labels to human readable la-
bels, below is an extract from the default file (in rawhide
as of Jan 2006):

s0:c0=CompanyConfidential

s0:c1=PatientRecord
s0:c2=Unclassified
s0:c3=TopSecret
s0:c1,c3=CompanyConfidentialRedHat
s0=
s0-s0:c0.c255=SystemLow-SystemHigh
s0:c0.c255=SystemHigh

If the comment characters are removed then this means
that category c0 maps to CompanyConfidential and the
combination of categories c0 and c3 maps to Company-
ConfidentialRedHat. With the current implementation a
combination of the categories c0 and c1 will not be trans-
lated, a translation is only applied if there is an exact
match from the MLS context to an entry in the mcs.conf
file. This mapping is used by programs such as ls to dis-
play the context of files when the -Z option is used to
display SE Linux contexts as we can see below:

ls -aZ /tmp/foo
drwx------ etbe etbe etbe:object_r:\
staff_tmp_t:SystemHigh .
drwxrwxrwt root root root:object_r:\
tmp_t ..
-rw-rw-r-- etbe etbe etbe:object_r:\
staff_tmp_t foo
ls -la
total 32
drwx------ 2 etbe etbe 16384 Sep 28\
17:05 .
drwxrwxrwt 15 root root 4096 Sep 28\
17:22 ..
-rw-rw-r-- 1 etbe etbe 0 Sep 28\
17:05 foo

In the above example you can see that the directory in
question has the classification s0 and the categories c0 to
c127 inclusive.

Below is an example of the output of the id command:

id -Z
etbe:staff_r:staff_t:SystemLow-\
SystemHigh

The above output shows that the clearance of the current
process is s0-s0:c0.c255.

9 Further development of MCS/MLS

The MCS policy not only provides the benefits stated
previously but also facilitates further development of
the MLS features of SE Linux. Prior to the release of
MCS hardly anyone was using the MLS features which

5

meant that numerous usability issues were not being ad-
dressed. The release of MCS means that many organi-
zations which would not consider a full MLS implemen-
tation will now be using MLS features - and expecting
them to work correctly! This of course means that soft-
ware developers (people who work for the distributions
of Linux, ”upstream” free-software developers, and com-
mercial application programmers) will be compelled to
make their software work in an MLS environment. This
addresses the greatest problem that has faced commercial
use of MLS systems, the fact that almost no software was
written specifically to support it and a large portion of the
available software failed to work in some way when used
on an MLS system.

When the MCS policy is widely released (Fedora Core
5 and Red Hat Enterprise Linux 5) it will be quite easy
to convert an FC5 or RHEL5 machine to the full MLS
policy. NB The full MLS policy will not be covered by
the standard Enterprise Linux support contract.

The full MLS policy is designed to fulfill the require-
ments for certification under the Labeled Security Pro-
tection Profile (LSPP) [3]. Certification is a long pro-
cess, merely having MLS support is far from enough to
get certification.

References

[1] Introduction to Multilevel Security
Dr. Rick Smith,
University of St. Thomas Minnesota
http://www.cs.stthomas.edu/faculty/

resmith/r/mls/index.html/

[2] Configuring the SELinux Policy
Stephen D. Smalley, NAI Labs, ssmalley@nai.com
http://www.nsa.gov/selinux/

policy2-abs.html/

[3] Labeled Security Protection Profile
Information Systems Security Organization NSA
http://niap.nist.gov/cc-scheme/pp/

PP LSPP V1.b.pdf/

[4] A Brief Introduction to Multi-Category Security
(MCS)
James Morris, Red Hat, jamesm@redhat.com
http://www.livejournal.com/users/

james morris/5583.html/

6

