
IBM IT Education Services

IBM eServer pSeries, Linux, Grid Computing and Storage
Technical University

7/16/2004 © Russell Coker

SE Linux Policy Writing
LINUX21

Russell Coker

IBM IT Education Services

© 2004 Russell Coker2 IBM IT Education Services - Technical University 7/16/2004

Topic Objectives

In this topic students will learn :

The syntax of the most common policy rules
The most common attributes, types, and macros, and how to use
them
How to write policy to cover common operations

IBM IT Education Services

© 2004 Russell Coker3 IBM IT Education Services - Technical University 7/16/2004

SE Linux quick overview

• Policy defines types for file system objects, domains for processes, roles
to limit the domains which can be entered, and identities to limit the roles
which can be used

• Policy defines rules for what access each domain has to each type. By
default nothing is allowed and every attempt to perform a denied
operation is logged. Policy can allow operations, and can specify that
some denied operations are not to be audited or that some permitted
operations are to be audited.

• The policy is loaded into the kernel at boot time by /sbin/init and a new
policy may be loaded by the administrator at any time

• The complete operation of the system is determined by the policy and
the type labeling of the file systems

IBM IT Education Services

© 2004 Russell Coker4 IBM IT Education Services - Technical University 7/16/2004

Policy Size and Compilation

• Policy is at the core of SE Linux. Default Fedora Core 2 policy has about
301,400 rules, a minimal policy may have as little as 80,000 rules.

• For the Strict policy there needs to be a policy for each daemon and for each
significant program that a user may run from a login session

• For Fedora there is also a Targetted policy which only limits a sub-set of the
programs on the system, most programs run in the domain unconfined_t

• Policy is written at a high level with M4 macros, policy source in FC2 is about
23,100 lines

• The result of M4 processing is about 204,500 lines in FC2 and an extra 20,700
lines are added for each user role

• The result of the M4 processing is a file named policy.conf which is compiled
with “checkpolicy” into a binary form that can be loaded into the kernel

IBM IT Education Services

© 2004 Russell Coker5 IBM IT Education Services - Technical University 7/16/2004

Policy Binary

• One allow or dontaudit line in policy.conf can result in many rules. Alternately
multiple allow and dontaudit lines can be combined into a single rule if they all
refer to the same contexts and class.

• The 301,400 rules in the FC2 policy comprise 33,300 non-comment lines of
which 26,500 are allow statements

• The binary policy that ships with FC2 has about 301,400 rules for an average
of 10 rules per allow statement

IBM IT Education Services

© 2004 Russell Coker6 IBM IT Education Services - Technical University 7/16/2004

Policy Aims

• Strict policy gives minimal privs to every daemon (a separate domain for each
daemon) and creates separate user domains for programs such as GPG, X,
ssh, etc

• Domains for user programs can be for untrusted programs (EG UML virtual
servers and games), or for programs that deal with secret data (such as GPG)

• Targetted policy locks down a small number of daemons that are significant for
security but leaves most programs unrestricted

IBM IT Education Services

© 2004 Russell Coker7 IBM IT Education Services - Technical University 7/16/2004

Policy Syntax 1/4

• Define an attribute that applies to 0 or more types:

attribute ATTRIB;

• The most common attributes are domain (for processes), file_type (for file
system objects), sysadmfile (for files the administrator may write to),
port_type (for labeling network ports), device_type (for device nodes), and
userdomain (which applies to all domains that may be used for a login
session)

• Define a type for a process/port/file:

type NAME [, ATTRIB [, ATTRIB …]];

type PROCESS_t, domain;

type SERVICE_PORT_t, port_type;

type A_FILE_t, file_type, sysadmfile;

IBM IT Education Services

© 2004 Russell Coker8 IBM IT Education Services - Technical University 7/16/2004

Policy Syntax 2/4

• There are currently only two type declarations in the Fedora policy which don’t
have attributes, they are proc_kmsg_t and proc_kcore_t (for /proc/kmsg and
/proc/kcore). It is extremely unlikely that you will have a good reason to define
types without attributes.

• To allow an access use the following:

allow DOMAIN TYPE:CLASS OPERATION;

allow mount_t file_type:dir search;

allow mount_t file_t:file { getattr read unlink };

• The DOMAIN may be the name of a domain, an attribute representing 0 or
more domains, or a list of domains and/or attributes. Rules that apply to an
attribute that represent 0 domains are OK, they are silently discarded at
compile time. A List is enclosed in curly brackets ‘{‘ and ‘}’, brackets within
brackets are legal and work in the way you would expect.

IBM IT Education Services

© 2004 Russell Coker9 IBM IT Education Services - Technical University 7/16/2004

Policy Syntax 3/4

• The TYPE is the type of a file system object or domain of a process that is
being acted upon. Lists and attributes work in the same manner as for the
DOMAIN.

• The CLASS describes the category of the object that is being referred to, the
most common classes that you will use when writing policy are the file-system
classes, they are file, dir, lnk_file, chr_file, blk_file, sock_file, and fifo_file.

It is often the case that an operation will be permitted for a given type in one
class but not for another object of the same type but a different class (EG
allowing writes to a file but not writes to a directory of the same type). For
most of the file-system classes you can guess what they mean and how to use
them. The only non-obvious use is that fifo_file applies to pipes created with
the pipe() system call as well as to fifo’s on disk.

IBM IT Education Services

© 2004 Russell Coker10 IBM IT Education Services - Technical University 7/16/2004

Policy Syntax 4/4
• A role is declared implicitly when domains are assigned to it with the following

syntax:
role ROLE-NAME types TYPE-LIST;
Where ROLE-NAME is the name of the role and TYPE-LIST is the list of
domains that are permitted in the role. For example:
role system_r types syslogd_t;
role user_r types user_t;

• The identity is defined in the users file with the following syntax:
user USER-NAME roles ROLE-LIST;
Where USER-NAME is the name of the user and ROLE-LIST is the list of roles
permitted for the identity. For example:
user jdoe roles { user_r };
user jadmin roles { staff_r sysadm_r system_r };

• Identity declarations should list the default role first as that determines the type
of the home directory

IBM IT Education Services

© 2004 Russell Coker11 IBM IT Education Services - Technical University 7/16/2004

Dir/File Macros 1/2

• For file-system classes the permitted operations are ioctl, read, write, create,
getattr, setattr, lock, relabelfrom, relabelto, append, unlink, link, rename,
execute, swapon, quotaon, and mounton. All of these are permitted to apply
to all file-system classes in the policy compilation, although some combinations
(such as swapon for dir class) do not make sense. The dir class has the
additional accesses of add_name, remove_name, reparent, search, and
rmdir.

• For most policy you won’t use the operations directly, you will use a macro that
expands to a list of operations that match your needs. Here are the macros
defined for file access:

x_file_perms { getattr execute }

r_file_perms { read getattr lock ioctl }

rx_file_perms { read getattr lock execute ioctl }

IBM IT Education Services

© 2004 Russell Coker12 IBM IT Education Services - Technical University 7/16/2004

Dir/File Macros 2/2

rw_file_perms { ioctl read getattr lock write append }

ra_file_perms { ioctl read getattr lock write append }

create_file_perms { create ioctl read getattr lock write setattr append link
unlink rename }

• Here are the macros for directory access:

r_dir_perms { read getattr lock search ioctl }

rw_dir_perms { read getattr lock search ioctl add_name
remove_name write }

ra_dir_perms { read getattr lock search ioctl add_name write }

create_dir_perms { create read getattr lock setattr ioctl link unlink
rename search add_name remove_name reparent write rmdir }

IBM IT Education Services

© 2004 Russell Coker13 IBM IT Education Services - Technical University 7/16/2004

Networking

• To grant network access the macro can_network() is used, it takes a single
parameter which is the name of the domain (or an attribute or list of domains)
which should be granted network access. This allows basic TCP/IP networking
via the tcp_socket and udp_socket classes.

• The two most common network classes are unix_stream_socket and
unix_dgram_socket which are used for Unix domain sockets (commonly used
within a process by library calls)

IBM IT Education Services

© 2004 Russell Coker14 IBM IT Education Services - Technical University 7/16/2004

Well Known Ports

• When a daemon listens to a port you will create a type for the port and in the
net_contexts file put a line of the form:

portcon PROTOCOL NUMBER system_u:object_r:PORT_TYPE

Where PROTOCOL is either tcp or udp, the NUMBER is the port number,
PORT_TYPE is the type to be assigned to the port.

• To allow listening on the port use a line of the form:

allow DOMAIN PORT_TYPE:PROTOCOL name_bind;

EG: allow slapd_t ldap_port_t:tcp_socket name_bind;

• Every well-known port that a daemon listens on should have a type assigned to
it to prevent other daemons from binding to it. Otherwise the wrong daemon
can bind to it maliciously (if controlled by an attacker) or accidentally (through
binding to an unspecified port number).

IBM IT Education Services

© 2004 Russell Coker15 IBM IT Education Services - Technical University 7/16/2004

Assertions

• The policy language allows very powerful rules that if misunderstood could
allow more access than is desired. To prevent such mistakes there are
assertion rules of the following form:
neverallow DOMAIN TYPE:CLASS OPERATION;

• If there is an allow statement that conflicts with a neverallow statement then the
policy will not compile.

• A common feature in an assertion is the logical not operator represented by the
~ character, for example ~{ domain unlabeled_t } means every type that is
not a domain and not unlabeled.

• Another common feature in assertions is a logical subtraction which means all
the types in one group minus any matching types which may be in a second
group. The following assertion prevents domains that don’t have the
auth_write attribute from writing to /etc/shadow:
neverallow { domain –auth_write } shadow_t:file ~r_file_perms;

IBM IT Education Services

© 2004 Russell Coker16 IBM IT Education Services - Technical University 7/16/2004

Auditing

• By default every operation that is denied by SE Linux is audited and every
operation that is permitted is not.

• To audit an allowed operation use the following syntax. NB an auditallow rule
does not imply an allow rule:

allow DOMAIN TYPE:CLASS OPERATION;

auditallow DOMAIN TYPE:CLASS OPERATION;

• To avoid auditing an operation that is not permitted (usually because it
happens very frequently) do the following:

dontaudit DOMAIN TYPE:CLASS OPERATION;

• Note that if Unix permissions do not permit an operation then the SE Linux
kernel code will never see it, and therefore it will not be audited.

IBM IT Education Services

© 2004 Russell Coker17 IBM IT Education Services - Technical University 7/16/2004

Important Domains/Types

• kernel_t used for the kernel and for init before it loads the policy and re-
exec’s itself.

• init_t used for init after it loads the policy and re-exec’s itself.

• unlabeled_t for processes and files who’s context has become invalid due to
a policy change.

• file_t for files that have never been labeled.

IBM IT Education Services

© 2004 Russell Coker18 IBM IT Education Services - Technical University 7/16/2004

Important Attributes 1/2
domain is assigned to all types for processes apart from unlabeled_t, used as the

target in some allow rules and in assertions
privlog is assigned to all domains that can use syslog, grants permission to write to

/dev/log
auth grants read access to /etc/shadow – generally programs should not require

this, any program that uses PAM should use auth_chkpwd, any program that
doesn’t use PAM should ideally be modified to use unix_chkpwd directly

auth_write grants read/write access to /etc/shadow
auth_chkpwd allows a system domain (domain running in the system_r role) to

authenticate users against /etc/shadow by running unix_chkpwd (which runs in
a domain that is permitted to read shadow_t

etc_writer is assigned to all domains that may write files of type etc_t
admin identifies every administrator domain
file_type identifies all types assigned to files, directories, links, sockets, and fifo’s on

disk

IBM IT Education Services

© 2004 Russell Coker19 IBM IT Education Services - Technical University 7/16/2004

Important Attributes 2/2

device_type identifies all types assigned to device nodes

sysadmfile identifies all types that the administrator may have full access to, such
access is granted automatically for every administrator domain (of which there
is only one at the moment)

userdomain identifies every user domain used for a login session

unpriv_userdomain identifies every user domain apart from sysadm_t probably not
much use since the subtraction operator was introduced into the policy
language

privmodule allows a system domain to load modules with modprobe/insmod

privhome allows a domain to have access to the base types for all user home
directories, generally only the administrator and mail servers need this

IBM IT Education Services

© 2004 Russell Coker20 IBM IT Education Services - Technical University 7/16/2004

Mail Servers
• A mail server interacts with most programs on the system. To alleviate the risk

of local DOS the program that receives mail from a user runs in it’s own
domain.

• Separate domain for receiving local mail from each user role, such domains
can not communicate with each other

• Mail server also interacts with the rest of the system for local delivery, SMTP
delivery, and SMTP reception

Mail related attributes:

user_mail_domain for user_mail_t, staff_mail_t, sysadm_mail_t, etc – all the
domains used to read the user’s files to send to the local mail server

mta_user_agent for domains that are part of an MTA which need to read user files
for local mail receipt – executed from user_mail_domain

mta_delivery_agent for MTA domains that deliver mail to the user’s home directory

Mail_server_sender for the domain in the MTA which makes outbound port 25
connections – for anti-virus etc

Mail_server_domain for MTA domains that listen on port 25

IBM IT Education Services

© 2004 Russell Coker21 IBM IT Education Services - Technical University 7/16/2004

User Domains

• The macro full_user_role() creates all domains and types for a user and a role
to match. The default policy has full_user_role(user) to create the role user_r,
the domain user_t, the types user_home_dir_t, user_home_t, and user_tmp_t
as well as many others.

• To add a new user role named professor you need full_user_role(professor) to
create all necessary domains and types and you need to modify the macro
in_user_role() to cause the domains for passwd_t, newrole_t and other critical
system programs to be in the professor_r role.

IBM IT Education Services

© 2004 Russell Coker22 IBM IT Education Services - Technical University 7/16/2004

User Domains for Applications
• Sometimes it is required that an application which is run by a user have a

different security context. For example GPG runs in a different domain so that
the main user domain can’t access the secret key (to make it more difficult to
steal the key).

• The file domains/program/gpg.te has the following policy:
type gpg_exec_t, file_type, sysadmfile, exec_type;

• The file file_contexts/program/gpg.fc has the following type labels:
HOME_DIR/\.gnypg(/.+)? system_u:object_r:ROLE_gpg_secret_t
/usr/bin/gpg system_u:object_r:gpg_exec_t

• The file macros/base_user_macros.te has the following:
ifdef(`gpg.te’, `gpg_domain($1)’)
If the file gpg.te is included in the policy build then the macro `gpg.te’ will be
defined, in which case we want to call the macro gpg_domains() and pass the
name of the user role as the first parameter (referred to as $1 in the M4 macro
language).

IBM IT Education Services

© 2004 Russell Coker23 IBM IT Education Services - Technical University 7/16/2004

Defining a Macro for a Domain definition
• I use the macro gpg_domain() as an example. I have included only the most

relevant policy, if you read the policy source you will notice other things I have
omitted for this example.

• The file macros/program/gpg_macros.te has an M4 macro definition of the form

define(`gpg_domain’, `

some policy…

‘)

• The next slide has the policy in the macro.

IBM IT Education Services

© 2004 Russell Coker24 IBM IT Education Services - Technical University 7/16/2004

Macro Policy for a Domain definition
• Declare the domain and the type for the files it uses and permit the domain in

the role.

type $1_gpg_t, domain, privlog;

type $1_gpg_secret_t, file_type, homedirfile, sysadmfile;

role $1_r types $1_gpg_t;

• Transition to user_gpg_t from user_t when running gpg_exec_t.

domain_auto_trans($1_t, gpg_exec_t, $1_gpg_t)

• Allow the user to see their gpg process in ps output and kill it.

allow { $1_gpg_t $1_t } $1_gpg_t :process signal;

can_ps($1_t, $1_gpg_t)

• Allow the domain to use it’s terminal device:

allow $1_gpg_t { $1_devpts_t $1_tty_device_t }:chr_file rw_file_perms;

allow $1_gpg_t privfd:fd use;

IBM IT Education Services

© 2004 Russell Coker25 IBM IT Education Services - Technical University 7/16/2004

Macro Policy for a Domain definition
• Allow gpg to use shared objects (libc6, libz, and libbz2), and allow it to

download public keys from the Internet.

uses_shlib($1_gpg_t)

can_network($1_gpg_t)

• When user_gpg_t creates ~/.gnupg have it labelled as user_gpg_secret_t.

file_type_auto_trans($1_gpg_t, $1_home_dir_t, $1_gpg_secret_t, dir)

• Give user_gpg_t read/write access to user_gpg_secret_t directories and allow
it to create files of the same type.

rw_dir_create_file($1_gpg_t, $1_gpg_secret_t)

• Allow user_gpg_t to read files created by user_t and write output files that
user_t can read.

file_type_auto_trans($1_gpg_t, $1_home_dir_t, $1_home_t, file)

file_type_auto_trans($1_gpg_t, tmp_t, $1_tmp_t, file)

IBM IT Education Services

© 2004 Russell Coker26 IBM IT Education Services - Technical University 7/16/2004

AVC Messages
• When an access is not permitted by SE Linux an audit message is logged,

here is a sample:

audit(1089889979.989:0): avc denied { write } for pid=10317
exe=/usr/bin/vim name=etc dev=hda1 ino=162881
scontext=root:user_r:user_t tcontext=system_u:object_r:etc_t tclass=dir

• This tells us that at time 1089889979.989 seconds since 1970-01-01 the
process vim which had pid 10317 tried to write to an object named etc (which
had the Inode number 162881) of class dir on the file system hda1. Vim had
the context root:user_r:user_t which means that someone logged in as root
with an unprivileged user role. The context of the directory was
system_u:object_r:etc_t.

• The program audit2allow can be used to convert AVC messages to allow rules,
the above message would be converted to:

allow user_t etc_t:dir write;

But don’t do this. Most times the output of audit2allow is not suitable for adding
to your policy, it’s just an indication of what’s being attempted.

IBM IT Education Services

© 2004 Russell Coker27 IBM IT Education Services - Technical University 7/16/2004

Policy Analysis

• apol from Tresys http://www.tresys.com/ is the most functional tool for
analyzing policy. It allows reading a binary policy or a policy.conf file and
analyzing it.

• Analyzing a policy source file is more useful because it can tell you which line
of source permits an action, and show information on attributes. When the
policy is compiled such data is discarded.

• Supported operations include discovering which rule permits an operation
(which is extremely difficult to do in any other way when attributes are used),
discovering whether an operation is permitted, and data flow analysis.

• slat from MITRE is a tool to analyse data flows in SE Linux policy, currently it
works on the policy.conf file but will probably be changed to work on policy
binaries. It produces an analysis of the policy which then needs to be
processed by another tool.

IBM IT Education Services

© 2004 Russell Coker28 IBM IT Education Services - Technical University 7/16/2004

Work to be Done

• Policy is at the core of SE Linux, any new developments in the kernel or
applications need matching policy changes

• New features in daemons and new interactions between daemons requires
new policy, incremental change to cope with new versions is constant

• Policy has to be audited to make sure that it meets it’s goals. Tresys has
developed a tool to analyse policy to help achieve this goal.

• Adding support for Security Enhanced X

• Writing more policy for MLS

• Policy to give similar functionality to BSD secure levels

• Split “security administrator” from “system administrator” (not entirely possible
but people want us to get part way)

IBM IT Education Services

© 2004 Russell Coker29 IBM IT Education Services - Technical University 7/16/2004

Q/A

• Those of you who are staying for the lab should start the Fedora Core
2 installation process on their machines now so that it can happen
during the break.

http://www.nsa.gov/selinux/ Main NSA SE Linux site

http://www.coker.com.au/selinux/ My SE Linux web pages

http://www.tresys.com/selinux/ Tresys policy tools

Russell Coker <russell@coker.com.au>

