Poly-Instantiated Directories and SE Linux

Russell Coker <russell@coker.com.au> Internet and Security Consulting

[□] The problem space for non-MLS systems

DMLS requirements

Linux implementation

□ How well the problem is solved

The problem space for non-MLS systems

- Traditionally /tmp and /var/tmp are used for temporary storage by all users and daemons
- Many programs use fixed or predictable file names permitting race-condition attacks (including DOS attacks)
- Sometimes the file name may contain sensitive information, it may be created without the user's knowledge
- Need to solve this without re-writing tens of thousands of programs and re-training millions of users

Examples

- □ strace -ff creates easily predictable file names
- Users act predictably
- Buggy daemons such as rlogind
- Buggy applications such as unzip CAN-2005-2475 and bzip2 CAN-2005-0953 can grant an attacker access to arbitrary data due to sym-link race conditions
- Buggy applications such as fbi CVE-2006-1695 can have a DOS attack if a predictabl directory exists
- Programs perform unknown operations on behalf of users (EG editors creating files under /tmp or /var/tmp)

Specific Attack Scenarios

□ Attack by user on user

□ Attack by user on daemon

□ Attack by non-root daemon on user

□ Attack by root daemon on user

Previous attempts

Restrictions on creating links - OpenWall

Hiding file names, only works for the case where file names are secret, not for boolea file names

MLS requirements

- Dultiple instances of home directory for each sensitivity level
- Multiple instances of shared directories with sensitive file names being the main motivation
- MLS itself solves the confidentiality issues related to reading files and the SE Linux domain-type model solves most integrity issues related to writing and reading files (ar mitigates the rest), so sensitive file names is the remaining problem
- There are situations where users who have the same SE Linux role and MLS level need to be prevented from seeing each other's data

Linux implementation

New systemcall unshare() to create private name-space for filesystems (among other things) - can be called from PAM module to work with unmodified programs

Directory such as /tmp/.inst/tmp.inst-rjc-rjc is created and bind mounted to /tmp

proc/self/mounts shows the filesystems mounted for a process, /proc/mounts links to /proc/self/mounts

PAM setting session required pam_namespace.so

Option unmnt_remnt for su and comparable programs (probably suexec, maybe MTA local delivery)

Shared-subtrees

□ Allow autofs and sys-admin mount commands to work

mount --make-shared / mount --bind /tmp /tmp mount --make-private /tmp

Only works on mount points, bind mount of /tmp needed for /tmp in root FS

If PI directories are not excluded from the shared name space then things go horribly wrong

How well the problem is solved

- □ Non-root daemons started via runuser will have PI
- User processes from regular login and cron jobs have PI
- Support for excluding some users from PI, to prevent them from attacking PI users an daemons all directories are under /tmp/.inst which is a mode 000 directory
- Adds significant integrity and confidentiality benefits both with and without SE Linux
- On SE Linux systems there is an option of instantiating based on context, UID, or both

Further Work

□ All initial goals met - new design goals after paper was written

- Daemons such as Apache that change UID after being started are not run with PI, need wrapper for this
- Need suexec support, support for local MTA delivery, and possibly other support for system processes acting on behalf of users
- Probably need to make more daemons support PAM session, suexec and postfix/loca are two good possibilities

Q/A

#selinux on irc.freenode.net
http://www.nsa.gov/selinux/ Official SE Linux web site
http://www.coker.com.au/selinux/ My SE Linux web pages

Russell Coker <russell@coker.com.au>

Internet and Security Consulting